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Unit-1 

 
Type-I Functional Divergence after Gene Duplication: the 

Poisson-based Model 
 

 

 

Introduction 

Many organisms have undergone genome wide or local chromosome duplication events during their evolution 

(Ohno 1970). Consequently, many genes are represented as several paralogs in the genome with related but distinct 

functions. These gene family proliferations are thought to have provided the raw materials for functional 

innovations.  

 

An understanding of the functional diversity of a gene family has been a major component in molecular evolutionary 

study. Extensive studies have been reported on the underlying mechanism of functional divergence after gene 

duplication. Ohno (1970) proposed that following gene duplication, one gene copy maintains the original function, 

while the other copy is free to accumulate amino acid changes as a result of functional redundancy or positive 

selection. Unless this type of functional divergence results in some new functions, over time all but one gene copy 

will be silenced by deleterious mutations. Hughes (1994) speculated that the ancestral gene might already be 

bifunctional and gene duplication simply allows each copy to specialize for one of several functions. Having 

realized the importance of coevolution between the interacted molecules (e.g., ligand/receptor), Fryxell (1996) 

argued that functional divergence may occur only when all genes in a pathway are duplicated simultaneously, e.g., 

by a genome duplication. It becomes clear that some evolutionary changes in the coding and/or regulatory regions 

after gene duplication must be responsible for the functional differences between members of a gene family. 

 

An interesting question is whether we can identify these important amino acid (or nucleotide) sites; the methods for 

doing so may have great potential for functional genomics since they are cost-effective, and the predictions obtained 

can be further tested by experimentation. For example, one may infer amino acid sites that have experienced altered 

functional roles in a period of evolution. Gu (1999) developed a stochastic model for the functional divergence after 

gene duplication, which can estimate the level of functional divergence from sequence data, and predict important 

amino acid residues for these functional differences between member genes of a gene family. The method 

distinguish between these changes related to functional divergence and the background changes which mainly 

represent neutral evolution. 

 

Functional Divergence and Altered Functional Constraint 

A (homologous) gene cluster is defined as a monophyletic group of sequences under a phylogenetic tree. For 

example, two gene clusters are generated by an event of gene duplication, and each of them consists of several 

orthologous sequences (fig. 1A). It is commonly believed that after gene duplication, the evolutionary rate (l) at an 

amino acid site may increase and functional divergence may occur in the early stage, followed by the late stage, in 

which purifying selection plays a major role in maintaining related but distinct functions (fig. 1B). The underlying 

mechanism for this type of accelerated evolution after gene duplication is still in dispute. If the early-stage 

functional divergence occurred in one duplicate gene, changes of functional roles at the sites involved can be 

observed in the late stage. As a result, evolutionary rates at these sites are different between the two gene clusters. 

Such functional divergence, resulting in altered functional constraint, is called type I functional divergence. 

          The central tenet is that type I functional divergence after gene duplication is highly correlated with the 

change in evolutionary rate, which is analogous to a fundamental rule in molecular evolution: functional importance 

is highly correlated with evolutionary conservation (Kimura 1983). Alternatively, type II functional divergence does 

not result in different functional constraints between the two gene clusters, but evolutionary rates can be different 

between early and late stages (fig. 1B). For example, cluster-specific residues may be subject to this type of 

functional divergence. In this paper, we deal mainly with type I functional divergence; type II functional divergence 

will be discussed elsewhere. The relationship between functional divergence, altered functional constraint, and 
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evolutionary rate provides a theoretical basis for modeling the type I functional divergence during sequence 

evolution 

 

 

 
 

A Simple ‘‘Model-Free’’ Method Rate Correlation between Two Gene Clusters  

If all sites have experienced no functional divergence after gene duplication, the two duplicate genes have no altered 

functional constraints, so the evolutionary rate of a site is always the same (or proportional) between them, i.e., the 

coefficient of rate correlation (over sites) is 1. Obviously, altered functional constraints caused by functional 

divergence will reduce the rate correlation. Consider a multiple alignment of amino acid sequences containing two 

gene family members (fig. 1). If orthologous sequences are functionally equivalent, the evolutionary rate (l) of a site 

remains constant (or proportional) among branches within a gene cluster, although it may vary among sites. Since a 

molecular clock is not assumed, lineage-specific factors such as generation time effect (Wu and Li 1985) will not 

affect the results. Hence, without loss of generality, the evolutionary rates in gene cluster 1 and gene cluster 2 are 

simply denoted by λ1 and λ2, respectively. The altered functional constraints between two gene clusters can be 

measured by the coefficient of rate correlation between λ1 and λ2, 

(1) 

where Var(λ1), Var(λ2) and Cov(λ1, λ2) are the variances and covariance of λ1 and λ2, respectively. If there is no 

functional divergence after gene duplication, λ1=1; otherwise, λ1<1. Therefore, a convenient measure for functional 

divergence can be simply defined as 

  (2) 

As θλ increases from 0 to 1, the functional divergence increases from very weak to extremely strong. In this sense, θλ 

is called the coefficient of functional divergence.  

 

The Poisson Model for Amino Acid Substitutions  

To avoid confusion, the term ‘‘model-free’’ means that there is no specific model for rate variation among 

sites and rate correlation between gene clusters; the method does require a model for amino acid changes at a site. A 

simple model is the Poisson process: at a given site, the number of amino acid changes (Xi, i=1, 2 for gene clusters 1 

and 2, respectively) follows a Poisson distribution, i.e., the probability of Xi=k is given by 

(3) 

where T1 and T2 are the total evolutionary times of clusters 1 and 2, respectively. In section A.1 of the appendix, we 

show that the coefficient of functional divergence defined by Eq.(2) is given by 

(4) 

where D1 and V1 (or D2 and V2) are the mean and variance of the number of changes (over sites) in cluster 1 (or 

cluster 2), respectively, and σ12 is the covariance (over sites) between them. 

To estimate θλ from equation (4), we need to know the number of changes at each site for each gene cluster 

(i.e., X1 and X2). Since X1 and X2 cannot be directly observed from the sequence data, a conventional solution is to 

use the minimum number of required changes (m) as an approximation, which can be inferred by the parsimony 

under a known phylogenetic tree (Fitch 1971). However, m is a biased ‘‘estimate’’ for the true number of changes 

because it does not consider the possibility of multiple hits. This problem has been solved by using a combination of 
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ancestral sequence inference and maximum-likelihood estimation (Gu and Zhang 1997). Given a phylogeny, Gu and 

Zhang (1997) have shown that the expected number of changes (X) at a given site is the nonnegative solution of the 

likelihood equation 

     (5) 

where B is the total branch length of the gene cluster, and bi is the i-th branch length, i=1, . . . , M (M is the total 

number of branches); δi= 1 if there is an amino acid change in the i-th branch, otherwise δi=0. Extensive computer 

simulation has shown that the estimate of mean of expected number of changes, as well as that of variance, is 

asymptotically unbiased and robust against the accuracy of ancestral amino acid inference. Two interesting special 

cases are (1) Xˆ ≈m for short branch lengths, and (2) Xˆ=-M ln(1-m/M) for equal branch lengths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical Testing  

When the numbers of changes at each site in both clusters (X1 and X2) are obtained by Gu and Zhang’s (1997) 

method, estimation of θλ is simple according to equation (4). Since θλ>0 provides evidence for functional divergence 

after gene duplication, we have to test the statistical significance. Let rX be the coefficient of correlation between X1 

and X2, which is defined by 

         (6) 

Since rX reaches its maximum value rM when θλ=0, i.e.,  

(7) 

 (see eq. A.9 in the appendix), the null hypothesis H0: θλ=0 is equivalent to rX = rM. As a standard coefficient of 

correlation, Fisher’s transformation can be used to compute the confidence level of rX: 

 
Let zX and zM, respectively, be the transforms of rX and rM. The sampling variance of zX is approximately V(zX)=1/(N 

-3), where N is the sequence length. Under the null hypothesis (rX=rM), the Z score [Z=(zX-zM)/(N-3)0.5] 

approximately follows a normal distribution. For example, if the Z score is |Z| >1.96, the null hypothesis θλ=0 can be 

rejected at the 5% significance level. Besides, by the delta method, the approximate sampling variance of can be 

computed as 

(8) 

We should note that although rX is negatively correlated with θλ and useful for constructing a statistical test, it is not 

a good measure of the level of functional divergence because it is evolutionarily time-dependent (see eq. A.14 in the 

appendix) 

 

Examples 

Transferrins are iron-binding transport proteins which can bind two atoms of ferric iron Fe3+. They are 

responsible for the transport of iron from sites of absorption and heme degradation to those of storage and 

utilization. There is only one gene in non-mammalian vertebrates (vTF). In mammals, two close-linked tissue-

specific genes are found, which encode serum transferrin (TF) and lactotransferrin (LTF), respectively.  

Apparently, this gene duplication occurred before the radiation of mammals but after the divergence between birds 

and mammals. The results are summarized in Table 1. 
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Two-state model for functional divergence 
The probabilistic model 

Consider an ideal case in which we already know exactly which sites are related to functional-divergence. 

Hence, all sites can be classified into either of two categories, F0 (functional divergence-unrelated) and F1 

(functional divergence-related).  In the F0 category, the evolutionary rate (λ) of a site is the same between gene 

clusters, indicating no change in functional constraints. In contrast, the evolutionary rate of an F1 site may have no 

correlation between gene clusters, because such sites have experienced altered functional constraints. However, in 

practice we do not know to which category each site belongs. This problem is solved by implementing a (two-state) 

probabilistic model: a given site can be in state F1 with a probability of P(F1), or state F0 with a probability of P(F0). 

Using the same notations as Eq.(1), we have Cov(λ1, λ2)= P(F1)[Var(λ1)Var(λ2)]0.5 because Cov(λ1, λ2|F0) 

=[Var(λ1)Var(λ2)]0.5 (completely correlated), and Cov(λ1, λ2|F1)=0 (independent). Then, one can show that  

(9) 

where rλ is the rate correlation between two gene clusters as defined by Eq.(1). That is, the coefficient of functional 

divergence (θλ) can be interpreted as the probability of a site being in the state of functional divergence (F1).  

Denoting the probability of functional divergence at site k by δk, we mention that the current two-state model 

assumes that δk=1 if it is F1, otherwise δk=0. Therefore, the expected proportion of sites to be functional divergence-

related is given by P(F1)×1+P(F0)×0=θλ. Furthermore, we assume that the evolutionary rate varies among sites 

according to a gamma distribution, i.e., 

(10) 

where λ=λ1 or λ2, respectively (Uzzel and Corbin 1971). The shape parameter α describes the degree of rate variation 

among sites, whereas β is only a scalar. Since 1/α is the square of the coefficient of variation of λ, the larger the 

αvalue is, the weaker the rate variation is, and α=∞ means a uniform rate among sites. 

The joint distribution of the number of changes, P(X1, X2), can be derived as follows. For any F1-site, the 

evolutionary rate is statistically independent between two clusters, whereas it is completely correlated at an F0-site. 

Thus, the probability of X1=i in cluster 1 and X2=j in cluster 2 under state F0 or F1 is given by 

 

(11) 

respectively, where  
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It is known that Q1(i) and Q2(j) are negative binomial distributions, i.e., 

 

(12) 

After some mathematical simplifications, one can show that K12(i, j) is given by 

 

(13) 

 

Then, the joint distribution is given by P(X1, X2)=P(F0)P(X1, X2|F0)+P(F1)P(X1, X2|F1), which can be expressed as  

   (14) 

One can verify that the joint distribution P(X1, X2) has the following properties: (i) The marginal distribution is a 

negative binomial distribution, i.e., 

(15) 

and (ii) the covariance between X1 and X2 is given by 

(16) 

When one gene cluster has a single sequence 

If one cluster (say, cluster 2) has only one single sequence, the joint distribution of X1 and X2 needs to be 

modified since X2 has only two states, X2=0 or 1, with probabilities Pr(X2=0)=exp(-λ2T2) and Pr(X2=1)=1-exp(-λ2T2), 

respectively. In this case, the joint distribution of X1 and X2 at an F0 site is P(X1=i, X2=0|F0)=K12(i,0), and P(X1=i, 

X2=1|F0)=Q1(i)-K12(i,0). Similarly, the joint distribution of X1 and X2 at an F1 site is P(X1=i, X2=0|F0)=Q1(i)Q2(0), 

and P(X1=i, X2=0|F1)=Q1(i)[1-Q2(0)]. Then, one can show the joint distribution of X1 and X2 as follows  

(17) 

 

Maximum Likelihood Estimation (MLE) 

Let Pk(i, j) be the probability of X1=i and X2=j at site k, Thus, the likelihood function can be expressed as  

(18) 

The parameter set x has four parameters, D1, D2, α and θλ, which can be numerically estimated by a standard 

maximum likelihood approach. Since each marginal distribution follows a negative binomial distribution, we can 

first use Gu and Zhang (1997)'s method for estimating the mean and gamma shape parameter for each gene cluster, 

i.e., D1, α1, and D2,  α2. Then, the initial value for α can be simply computed by α0=(α1α2)0.5, and the initial value for 

θλ by the ‘model-free’ estimate [Eq.(4)]. Using these initial values, the ML estimates of θλ and α, as well as 

approximate sampling variances, can be obtained numerically. A likelihood ratio test (LRT) is constructed for 

testing the null hypothesis H0: θλ=0 v.s. H0: θλ>0. For the likelihood ratio LR=max{L(H0|data)}/max{L(HA|data)}, it 

is known that -2ln(LR) asymptotically follows a χ2
[1]. Some examples for MLE are shown in table 2. Generally 

speaking, ML estimates are slightly smaller than those of Eq.(4). 
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Predicting Critical Amino Acid Residues 
Our results (see tables 1 and 2) have provided strong statistical evidence for the functional divergence after 

gene duplication (i.e., θλ>0). Therefore, it is of great interest to (statistically) predict which sites are likely to be 

responsible for these (type I) functional differences. Indeed, these sites can be further tested by using molecular, 

biochemical or transgenic approaches. We shall develop a site-specific profile for this purpose, which can be 

achieved by an empirical Bayesian model. 

          Remember that in the two-state model, each site has two possible states, F0 (functional constraint) and F1 

(functional divergence), with the (prior) probabilities P(F1)=θλ and P(F0)=1-θλ, respectively. To provide a statistical 

basis for predicting which state is more likely at a given site, we need to compute the (posterior) probability of state 

F1 at this site with X1 (and X2) changes in cluster 1 (and 2), P(F1|X1, X2). Obviously, P(F0|X1, X2)=1-P(F1|X1, X2). 

According to the Bayesian law and Eqs.(11) and (14), we can show 

(19) 

 

Then, given X1=i and X2=j, the posterior (probability) ratio can be defined as follows 

(20) 

which turns out to be  

(21) 

 

We may use either Eq.(19) or Eq.(21) to identify these amino acid sites that may be responsible for the functional 

divergence, given a cut-off value. In practice, the choice of a cut-off value is somewhat arbitrary, from P(F1|X1, 

X2)>0.5 (Rij>1) to P(F1|X1, X2)>0.95 (or Rij>20). 

 

 
Appendix: some technical comments  
Derivation of Eq.(4) 

First we consider the Poisson process at a given site, in which the first and second moments can be expressed 

as the following conditional expectations,  

                (A-1) 

(i=1, 2). If there is no gene conversion or recombination between the two homologous genes, amino acid 

substitutions at a site are independent between two monophyletic gene clusters and therefore, 

(A-2) 

The evolutionary rates (λ1 and λ2) are not only correlated but also different among sites, which in principle can be 

described by a general joint distribution, Φ(λ1, λ2). To compute the mean and variance over all sites (for each 

cluster), let φ(λ1) and φ(λ2) be the marginal distributions of Φ(λ1, λ2), which describe the rate variation among sites. 

By definition, they are given by 

 
 

respectively. According to the conditional probability theory, one can show that 

(A-3) 

 

i=1,2, where E[λi] is the mean rate of λi. In the same manner, we have 
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(A-4) 

For simplicity, let Di=E[Xi] and Vi=E[Xi
2]-( E[Xi])2. From Eq.(A.4) the variance of λi, Var(=E[λi

2]-( E[λi])2, is given 

by 

            (A-5) 

Now consider the covariance between λ1 and λ2. From Eqs.(A.1) and (A.2) we have  

(A-6) 

and therefore the covariance between X1 and X2, σ12, is given by  

 

                       (A-7) 

Then, from Eqs.(A.5) and (A.7), one can easily show that the coefficient of rate correlation rλ defined by Eq.(1) is 

given by  

              (A-8) 

 

which directly leads to Eq.(4). Since rλ ≤1, we have 

 
which means 

 

(A-9) 

 

A short note on rate variation among sites 

           The gamma distribution model for rate variation among sites assumes no altered functional constraints during 

evolution, i.e., θλ=0. Here we use a simple case to show that the estimation of the shape parameter α may be biased 

if the assumption of θλ=0 is violated. In the two-cluster case (figure 1A), let X=X1+X2 be the (total) number of 

changes at a site. One can show that X follows a negative binomial distribution if θλ=0, i.e., no altered functional 

constraints (e.g., Gu and Zhang 1997). Under this model, the variance of X is given by  

(A-10) 

where D is the mean of X. In the same manner for each cluster we have V1=D1+D1
2/α, and V2=D2+D2

2/α. On the 

other hand, we mention X=X1+X2 so that D=D1+D2 and V=V1+V2+2 σ12. From Eq.(A.8) we have 

(A-11) 

Therefore, if one defines α* as α*=D2/(V-D), one can easily show 

                                           (A-12) 

where b=2D1D2/(D1+D2)2; α*=α only when θλ=0. If we use the method of moments to estimate α under the 

assumption of no altered functional constraints between these two gene clusters, we obtain α*=D2/(V-D). According 

to Eq.(A.12), for the sufficient large number of sites, the following relation holds 

(A-13) 
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Unit-2 
 

Type-I Functional Divergence after Gene Duplication: 
Caspase Gene Family Analysis  

 
 
Introduction 
After gene duplication, the classical model (Ohno 1970) suggests that one gene copy maintains the original 

function, while the other copy is free to accumulate amino acid changes toward functional divergence. Since then, 

many specific models have been proposed (e.g., Li 1983; Clark 1994; Force et al. 1999). However, the details of 

functional divergence between duplicate genes remain largely unexplored. Gu (1999) developed a method to detect 

amino acid residues that contribute to functional divergence after gene duplication, which can be considered as 

candidates for further experimentation. Certainly, its effectiveness for functional genomics needs to be verified by 

using gene families with substantial biological/structural information. 

 

Apoptosis, or programmed cell death, is an ordered process in which cells commit suicide when they are not needed 
or are potentially harmful. The key component in the apoptotic machinery is a cascade of cysteine aspartyl protease s 

(caspases). All caspases, which are initially inactive proenzymes, share the same processing scheme to achieve 

mature forms after cleavage(s) at specific Asp sites. To date, at least 14 members of the caspase gene family have 
been identified in mammals, which can be further classified into two major subfamilies, CED-3 and ICE. Substantial 

evidence has shown that the CED-3-type caspases are essential for most apoptosis pathways. In contrast, the major 

function of the ICE-type caspases is to mediate immune response, although some members may play a role in cell 
death in some circumstances. X-ray crystallography has also shown a significant structural difference between these 

two types of caspases. In this study, we take advantage of experimental evidence of caspases to study the functional-

structural basis of statistical predictions from Gu’s (1999) method. 

 

 

Evolution of caspase-mediated molecular pathways  

          The phylogenetic tree (Figure 2) of the caspase gene family was inferred by the neighbor-joining (NJ) method.  

The presence of caspases in vertebrates, arthropods, and nematodes suggests that the emergence of the caspase gene 

Figure 2.—The phylogenetic tree of the caspase 

gene family, inferred by the neighbor-joining 

method on the basis of the amino acid sequence 

with Poisson correction. Bootstrap values _50% are 

presented. Initiator caspases (I-casps) are involved in 

upstream regulatory events, and effector caspases 

(E-casps) directly lead to cell disassembly. 
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family might be close to or even earlier than the origin of the animal kingdom. Aravind et al. (1999) suggested that 

caspase may evolve from an ancient protease supergene family, but the root of the inferred tree (Figure 2) remains 

unclear. The evolutionary pattern of caspases can be generally described as follows. On the basin of the tree (see A in  

Figure 2), there were at least four duplication events that had occurred during a very short time period, resulting in five 

major lineages: (i) the ICE subfamily, consisting of caspase-1, -4, -5, -13, -11, and -12; (ii) caspase-14; (iii) caspase-2; 

(iv) caspase-9; and (v) the common ancestor of caspase-8/-10 and caspase-3/-6/-7. In addition, the effector caspases 

(E-casp-3/-7/-6) and the ancestor of caspase-8 and -10 were generated before the emergence of arthropods. 

Interestingly, in contrast to the major (ancient) lineages in CED-3-type caspases, ICE-type caspases diversified recently 

after the divergence of amphibians and mammals, and some of them (e.g., caspase-4 and -5) arose even after the 

mammalian radiation. 

 

Predicting critical residues for type I functional divergence between CED-3 and ICE 

             We estimated that the coefficient of functional divergence between ICE and CED-3 subfamilies is 0.29± 0.05 

[the ML option in Gu’s (1999) method], implying that the altered functional constraint between them is statistically 

significant. Further, we use the posterior probability P(S1|X) to predict critical amino acid residues responsible for type 

I functional divergence between CED-3 and ICE subfamilies. The baseline of the site-specific profile measured by 

P(S1|X) is 0.2–0.3 (Figure 4A). Thirty-two sites (16% of total sites) have P(S1|X)>0.5. The fact that most sites have 

scores 50% indicates their similar functional roles between CED-3 and ICE. 

           Although posterior analysis is widely used in bioinformatics, the cutoff value for residue selection is usually 

empirical. We found that when the first 21 highest-scored residues are removed from the multiple alignment, the estimate 

of θ is virtually 0. These 21 amino acid residues (among 198 residues) corresponding to the cutoff value P(S1|X)  

0.61 are then chosen for further analysis. Of course, this procedure is meaningful only when θ>0 significantly. 

 

 

The functional-structural basis of altered functional constraints 

          We mapped these 21 predicted sites onto the 3-D structure of caspases. The resolved X-ray crystal structures of 

human caspase-1 and -3 (Wilson et al. 1994; Rotonda et al. 1996) were used to illustrate the structural features of ICE 

and CED-3 subfamilies, respectively. From the literature, we found experimental evidence for four predicted residues 

that are involved in the functional-structural divergence between CED-3 and ICE subfamilies (Figure 4B): 

1. Residue 161(348) (In the literature, this site is numbered as W348, according to the protein sequence of 

human caspase-1) is critical for CED-3 caspase substrate specificity by interacting with a unique surface loop in 3-D 
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structure [P(S1|X) =0.999.] At this position, all 22 sequences from the CED-3 subfamily contain an invariant tryptophan 

(W), whereas a variety of residues are present in the ICE subfamily (Figure 5). Crystal structural analysis reveals that 

W348 is a key determinant for the caspase-3 (CED-3)-type specificity. First, W348 forms a narrow pocket with the 

surface loop that is highly conserved in the CED-3 subfamily; see the boxed region in Figure 5. The steric constriction 

due to this pocket determines the preference of caspase-3 to the substrates with small hydrophilic side chains. Second, 

W348 along with a group of residues forms a hydrogen bond network, which affects the interaction with the substrate. 

In contrast, the surface loop shared with CED-3 caspases seems to be deleted in all ICE-type caspases, as shown in the 

boxed region in Figure 5. Hence, the relaxed evolutionary constraint observed at this position in the ICE subfamily is 

likely to be caused by the 3-D structural difference.  

2. Residues 86 [P(S1|X) =0.75] and 88[P(S1|X) =0.74] are responsible for 3-D difference with an unknown 

functional role. Indeed, in human caspase-1 (ICE), these two residues appear to lie in a small loop that is not found in 

the CED-3 subfamily.  

3. Residue 131 [P(S1|X)=0.866] is proteolytic site specific to the ICE subfamily. All caspases are synthesized 

as inactive proenzymes that need to be processed to the mature forms. However, distinct cleavage sites within the 

precursors are found for two subfamilies. D131 is known as a cleavage site in human caspase-1 (ICE type). All ICE-type 

caspases preserve an Asp (D) at this position, except for mouse caspase-12 (Asn, E). However, human caspase-3 (CED-

3 type) utilizes two other Asn sites for cleavage (Rotonda et al. 1996) so that the functional role of position 131 in CED-

3 caspases is no longer important. Therefore, the altered evolutionary constraints at this position can be well explained 

by the different utilization of cleavage sites for the precursor processing between CED-3 and ICE subfamilies. 
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Pattern of type I functional divergence among CED-3-type caspases  

The CED-3 subfamily consists of a specific group of caspases that mediate the programmed cell death in a well-

regulated proteolytic cascade and employ related but distinct functions. Here we infer the trend of altered functional 

constraint of each cluster. Due to the data availability, we study five gene clusters: caspase-3, -7, -6, -8/-10, and -2. The 

upper diagonal of Table 1 shows pairwise coefficients of type I functional divergence (θ) between them; all of them are 

significantly >0 (P<0.05), with only one exception; i.e., θ=0 0.006 between caspase-7 and cluster -8/-10.  

To explore the pattern of type I functional divergence in each cluster, we performed functional distance analysis 

(see methods). The pairwise functional distances (dF) between clusters are shown in the lower diagonal of Table 1. The 

star-like tree presented in Figure 6 shows the type I functional branch length (bF) of each cluster, estimated by the least-

squares method. The null hypothesis of equal bF value for each cluster was statistically rejected (P<0.05).  

Long functional branch lengths (bF) of caspase-3, -6, and -2 suggest that these genes may have undergone 

extensive altered functional constraints as a result of specialized functional roles in apoptosis (Figure 6). Supportive 

experimental evidence is summarized as follows: (i) the non-redundant functional role of caspase-3 in neurological 

apoptosis is confirmed by caspase-3 -/- knockout mice; (ii) caspase-6 and -3 have different substrate specificity, but both 

participate in the protease amplification cycle by activating each other, which triggers a series of apoptotic interactions, 

and (iii) caspase-2 has its unique dual-role position in positive and negative regulation in apoptosis by differential 

expression of two alternative splicing isoforms. This dual-role property is also confirmed by knockout mice: Caspase-2 

deficiency causes one defective apoptotic pathway (mediated by granzyme B and perforin) but accelerates another 
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pathway (cell death of motor neurons).  

In contrast, virtually zero bF values of caspase-7 and -8/-10 indicate that the evolutionary rate of each site in 

these genes is almost identical to that of the ancestral gene. In this regard, these caspases may inherit a large component 

of ancestral function during caspase gene family evolution.  

For each duplicate gene, the average intensity of functional constraints can be approximately measured by the 

dN/dS ratio between the human and mouse. Interestingly, caspase-3, -6, and -2 (long bF) have lower dN/dS ratios than 

caspase-7 and -8/-10 (zero bF), indicating that type I functional divergence in caspases may result in a stronger functional 

role in evolutionary novelties after gene duplication (Figure 6B).  
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Unit-3 
 

Functional Divergence after Gene Duplication: the Markov 
Chain Model 

 
 
Introduction 
Since gene family proliferation is thought to have provided the raw materials for functional innovations, it is 

desirable, from sequence analysis, to identify amino acid sites that are responsible for the functional diversity. This 

approach has great potential for functional genomics because it is cost-effective, and these predictions can be further 

tested by experimentation. For molecular evolutionists, it is important to know the level of functional divergence 

after gene (or genome) duplication, as well as how many amino acid substitutions are actually involved in functional 

innovations. Since most amino acid changes are not related to functional divergence but represent neutral evolution, 

it is crucial to develop appropriate statistical methods to distinguish between these two possibilities.  

 

When sequences of a gene family are available, the identification of functionally important residues can be 

approached computationally. The approach introduced by Casari et al. (1995) used a vectorial analysis of sequence 

profiles to identify functionally important residues. Lichtarge et al. (1996) developed a method called evolutionary 

tracing, which is extended recently by Landgraf et al. (1999), known as weighted evolutionary tracing. In these 

methods, the degree of conservation in each position is scored for different subfamilies and then visualized on the 

three-dimensional protein structure.  

 

Gu (1999) has developed a probabilistic model, based on the underlying principle that functional divergence after 

gene duplication is highly correlated with the change of evolutionary rate. This correlation is complement to a 

fundamental rule in molecular evolution -- functional importance is highly correlated with evolutionary conservation  

(Kimura 1983). A site-specific profile based on posterior probability was then developed to predict critical residues 

for functional differences between two gene clusters. Wang and Gu (2000) have successfully applied this new-

developed method to study the functional diversity of caspase gene family, and found that our predictions are 

supported by experimental data.  

 

In this paper, the modeling for functional divergence after gene duplication is studied extensively under the Markov 

chain model of sequence evolution (Felsenstein 1981), which is further extended to the case of large family with 

many member genes. According to the observed alignment pattern (amino acid configuration), we study two 

important types of functional divergence (type I and type II, respectively). We show that Gu's (1999) method is a 

fast algorithm for two gene clusters. The performance of these methods is compared by examples. 

 
Functional divergence after gene duplication 
Consider a multiple alignment of a gene family with two homologous genes 1 and 2 (figure 1). The pattern of amino 

acid alignment can be tentatively classified as follows (figure 1).   

Type 0 represents the amino acid pattern that is universally conserved through the whole gene family, implying that 

those residues are important for the common function shared by all member genes.  

Type I represents the amino acid pattern that is highly conserved in gene 1 but highly variable in gene 2, or vice 

versa, implying that those residues have experienced altered functional constraints.  

Type II represents the amino acid pattern that is highly conserved in both genes but their biochemical properties are 

very different, e.g., charge positive v.s. negative, implying that those residues may be responsible for functional 

specification.  

Type U represents the amino acid pattern at many residues that are not such clear-cut, referred as unclassified.      
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After gene duplication, functional divergence between homologous genes 1 and 2 is likely to occur in the early stage 

(figure 2). According to amino acid configurations that are likely to be generated, there are two basic types of 

functional divergence after gene duplication. Type I functional divergence results in altered functional constraints 

(i.e., different evolutionary rate) between duplicate genes. Type II functional divergence results in no altered 

functional constraints but radical change in amino acid property between them (e.g., charge, hydrophobicity, etc.). 

Intuitively, one may expect that type I (or type II) amino acid patterns are likely to be generated by type I (or type II) 

functional divergence. It might be true only when the effect of type I (or type II) functional divergence has been 

shown statistically significant under a stochastic model. Then, the possibility of a site being functional divergence-

related (type I or type II) can be measured by a posterior probability, when the observed amino acid pattern is given. 

 

 

 

Type I functional divergence: two clusters 
Following the statistical framework developed by Gu (1999), we build a ``subtree" likelihood to estimate the (type I) 

functional divergence by detecting the level of altered functional constraints between two clusters (figure 2A). The 

advantage of subtree likelihood is its simplicity because the phylogenetic relationship among gene clusters will not 

be considered.  
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Unrooted likelihood for each cluster 

Under the Markov chain model, the likelihood for sequence evolution can be derived as follows. First, the transition 

probability matrix for a given time period t can be computed as P=eλRt, where the rate matrix R represents the 

pattern of amino acid substitutions, which can be empirically determined by, for example, the Dayhoff model the 

JTT model. The evolutionary rate (λ) may vary among sites because of different functional constraints. Usually λ is 

treated as a random variable, which follows a gamma distribution, i.e., 

    (1) 

The shape parameter α describes the strength of rate variation among sites (that is, a small value of α means a strong 

rate heterogeneity among sites, and α=∞ means no rate variation among sites), whereas β is a scale constant.  

Consider the phylogenetic tree in Figure 2. Let X=(x1, x2, x3, x4) and Y=(y1, y2, y3, y4) be the observed amino acid 

patterns of a site for clusters 1 and 2, respectively. For the unrooted subtree for cluster 1 or 2 (panel A), the 

conditional probability of observing X or Y at a site can be written as follows, respectively   

 

   (2) 

where Pij=Pij(vij) is the transition probability from node i to node j, vij is the branch length between them; bi is the 

frequency of amino acid i. By integrating out the random variable λ, the probability of observing X or Y at a site is 

given by 

(3) 

respectively, where E means taking expectation.  

 

Two-state model for functional divergence 

          For two gene clusters generated by gene duplication, the two-state model assumes that, in each cluster one site 

has two possible states, F0  (functional divergence-unrelated) and F1 (functional divergence-related). As a result, 

there are four combined states, i.e., (F0, F0), (F0, F1), (F1, F0), and (F1, F1). These states are also called functional 

divergence configuration, where the first position is for clusters 1 and the second for cluster 2. When a site is under 

(F0, F0), i.e., no altered functional constraints in both clusters, the evolutionary rate at this site is virtually the same 

between two clusters, i.e., λ1=λ2. For the last three combined states, however, the amino acid residue has experienced 

altered functional constraints (i.e., under F1) at least in one cluster, resulting in statistical independence between λ1 

and λ2 (Gu 1999).   

The assumption of rate-independence for type I functional divergence means that knowing the evolutionary rate (or 

the functional constraint) at such sites in one cluster contains no information for predicting the intensity of 

functional constraint in the other cluster. Since λ1 and λ2 are independent under each of (F0, F1), (F1, F0) and (F1, F1), 

these combined states are not distinguishable under the current model; they have to be degenerated to a single one. 

Consequently, there are two nondegenerate combined states (functional divergence configurations), denoted by 

S0=(F0, F0), and S1=(F0, F1)+(F1, F0)+(F1, F1), respectively. It should be noted that (F0, F0) was written as F0, and S1 

as F1 (Gu 1999). In this sense, the F-notation describes the status in a single cluster, while S-notation is used for the 

functional divergence configuration of a gene family.  

 

The subtree likelihood 

Let P(S1)=θ12 be the probability of a site being in state S1, and P(S0)=1- θ12 be the probability of a site being in state 

S0. We call θ12 the coefficient of type I functional divergence between cluster 1 and cluster 2 (Gu 1999). Let X and Y 

be the amino acid pattern of a site in clusters 1 and 2, respectively. Our purpose is to build a likelihood function for 

estimating θ12 from sequences. Gu (1999) has shown that the subtree likelihood provides a simple solution for this 

purpose. Since it only depends on the (unrooted) subtrees of two clusters, the joint probability can be easily derived 

based on the pattern of rate-independence. In the following, we use the superscript (*) to distinguish the subtree 

likelihood from the conventional (whole-tree) likelihood, e.g., the joint probability of two subtrees is denoted by 
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p*(X, Y). 

       Since evolutionary rates (λ1 and λ2) at an S1-site (i.e., a site under S1), are statistically independent between two 

clusters, whereas they are completely correlated (λ1=λ2, without loss of generality) at an S0-site, the joint probability 

of subtrees conditional on S0 or S1 is given by 

  (4) 

where f(X|λ1) or f(Y|λ2) is the likelihood for each unrooted subtree, respectively, e.g., it is given by Eq.(2) for the 

phylogeny in figure 2(A).  

From the two-state model, one can easily show that the joint probability of two subtrees can be written as 

(5) 

Then, under the assumption of site-independence, the likelihood function over all sites (gaps excluded) is given by  

                  (6) 

where k runs for sites, and x is the set of unknown parameters. 

   

Numerical algorithm 

It is complicated to compute p*(X, Y); they involve the phylogenetic tree, branch lengths (v), the shape parameter (α) 

of a gamma distribution, and the coefficient of functional divergence (θ12). We propose the following algorithm to 

solve this problem:   

(1) The phylogenetic tree is inferred by the neighbor-joining method (Saitou and Nei 1987), which can handle very 

large number of sequences. 

(2) Given the inferred topology, the branch lengths (v) are estimated by a least-square method, and the gamma shape 

parameter (α) is estimated by Gu and Zhang’s (1997) method. Then, computation of those expectations in Eq.(4) can 

be approximated similar to Yang (1994). 

(3) Regarding all other parameters as constants, the maximum likelihood estimate (MLE) of θ12 can be obtained by  

 
which satisfies 

     (7) 

 

where N is the sequence length and hk=1/(ak-1), ak=f*(X, Y|S1)/f*(X, Y|S0) for site k. 

(4) A numerical iteration such as simplex method is implemented to find the final ML estimates of v, α and θ12 under 

the given phylogeny.  

 

After obtaining these ML estimates, the likelihood ratio test (LRT) can be constructed under the null hypothesis H0: 

θ12=0 vs. HA: θ12>0. If H0 is rejected significantly, it provides statistical evidence for functional divergence in the 

coding region after gene duplication, i.e., functional constraints have shifted between two homologous genes. 

 

Type I functional divergence: multiple clusters 
For a large gene family with many member genes (clusters), the pattern of amino acid alignments is complicated. 

Even for three clusters, type I amino acid pattern contains many subtypes: cluster 1 is highly variable but clusters 2 

and 3 are conserved, etc. The subtree likelihood can be extended to any n number of gene clusters, but may demand 

a huge computational time when n is large.   

 

Subtree likelihood for multiple clusters 

Let λi and Xi be the evolutionary rate and amino acid pattern of a site in cluster i, respectively, i=1,…,n, and 

X=(X1,…, Xn). For two possible states (F0/F1) in each gene cluster, we have in total 2n possible combined states 

(functional divergence configurations).  

For three gene clusters (n=3), all functional divergence configurations (23=8) are listed as follows: (F0, F0, F0), (F0, 

F0, F1), (F0, F1, F0), (F1, F0, F0), (F0, F1, F1), (F1, F0, F1), (F1, F1, F0), (F1, F1, F1), where the first, second and third 

positions refer to the F0/F1 status of gene clusters 1, 2, and 3, respectively. For each of them, the relationship of 
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evolutionary rates (λ1, λ2 and λ3) among three clusters is shown in table 1. If a site is under  

(F0, F0, F0), λ1, λ2 and λ3 are completely correlated so that one can assume λ1=λ2=λ3, without loss of generality. 

Similarly, under (F0, F0, F1), λ1=λ2 (=λ), which is independent of λ3; and so forth. However, the last four combined 

states, (F0, F1, F1), (F1, F0, F1), (F1, F1, F0), (F1, F1, F1), have to be degenerated to a single combined state (S4) 

because λ1, λ2 and λ3 are mutually independent (table 1). Note that there are m=2n-n nondegenerate combined states 

(functional divergence configurations) in the case of n clusters, which are denoted by Sj, j=0,…, m-1. In particular, 

S0 indicates the functional divergence configuration that all clusters are under F0, i.e., S0=(F0, F0, …, F0). 

According to the pattern of rate independence (table 1), we can show that the joint probability of three subtrees 

under each functional divergence configuration (Sj) is given by  

(8) 

where f(X1|λ), f(X2|λ) or f(X3|λ) is the likelihood for the (unrooted) subtree of each gene cluster, respectively. 

Let πj be the (prior) probability of a site under Sj, i.e., πj=P(Sj). Thus, the joint probability of three subtrees at a site is 

given by  

(9) 

where m=5. Apparently, Eq.(5) is a special case of Eq.(9) when n=2 (and so m=2), and π0=1-θ12 and π1=θ12. In 

general, πj (j=1, 2,…, m-1) is called the coefficients of type I functional divergence for functional divergence 

configuration Sj. In particular, we define  

 

(10) 

as the coefficient of (type I) functional divergence of the gene family.    

 

Numerical algorithm 

Similar to Eq.(6), unknown parameters can be estimated by maximizing the likelihood L*=Пk p*(X(k)), which can be 

approached by extending the algorithm for two-clusters; they are the same except for step 3 [i.e., Eq.(7)]. When the 

number of gene clusters (n) is not very large, the Newton-Raphson algorithm is computationally efficient. Let π be 

the parameter vector, π=(π1,…, πm-1). The iteration equation is then given by π(l+1)= π(1)-H-1g, where g is the grade 

vector, whose i-th element is  

 
and H is the Haesson matrix, whose ij-th element is  

 
When appropriate initial values are given, π(1) would converge to π^. Finally, their large sample variance-covariance 

matrix can be approximately estimated by the inverse of Fisher's information matrix.  

 

When n is large, an EM algorithm (Expectation and Maximization) can be implemented. The EM method is a very 

general iterative approach for the dataset with missing (or incomplete) data. In our case, the ML estimates of πi 

would be easy to obtain, if we know the state (F0/F1) to which each site belongs in each gene cluster. Thus, the 

original data set is treated as incomplete data, missing the category information. Using a current estimate of the 

unknown parameter values, the expected value of the incomplete data is computed, weighted by the posterior 

probability. This is the expectation, or E-step. The result is a set of likelihood equations that are considerably easier 

to solve than the full likelihood (the maximization, or M-step). The new estimates obtained from the M step are then 

used to update the expected values, and this approach is iterated until convergence.  

 

Likelihood ratio tests (LRT) can be constructed under various null hypothesis by specifying some coefficients of 

functional divergence. In particular, the LRT under the null H0: π1=1 is apparently the most powerful test. 
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Significant rejection of the null suggests functional divergence among member genes of a gene family. 

 

Types I and II functional divergences: two-gene clusters 
In spite of the efficiency for estimating type I functional divergence, the subtree likelihood is not able to detect type 

II functional divergence that requires the evolutionary relationship between clusters. Therefore, it is desirable to 

build a ‘whole-tree’ likelihood for estimating these two types of functional divergence simultaneously. 

In the early stage after gene duplication, many evolutionary forces (e.g., positive selection, functional relaxation, or 

coevolution between contact sites) may play roles in amino acid substitutions so that a comprehensive modeling 

could be complicated. A simple solution is to consider the internal branch between two clusters (i.e., the early stage) 

as cluster 0 (figure 2B), which is ancestral. Let λ1 and λ2 be the evolutionary rates in clusters 1 and 2, respectively, 

and λ0 be the evolutionary rate in the internal branch (cluster 0). For each cluster, a given site has two possible states, 

F0 (functional divergence-unrelated) and F1 (functional divergence-related). Therefore, similar to the subtree 

likelihood of three clusters, we have 23=8 possible combined states that can be degenerated to 5 functional 

divergence configurations, under which the relationship between λ0, λ1 and λ2 is shown in Table 2. Let πj (j=1,…,5) 

be the probability of a site being under Sj, i.e., πj=P(Sj). For a given site, the conditional probability for observing X 

and Y is given by 

(11) 

where f(X|λ1; x0) and f(Y|λ2; y0) are the likelihood functions for clusters 1 and 2, conditional of the roots x0 and y0, 

respectively, and v is the internal branch length. When the phylogeny is given in figure 2B, we have 

(12) 

The conditional probability for observing X and Y under each combined state is given by 

(13) 

Therefore, the joint probability of X and Y can be generally expressed as follows 

(14) 

where m=5 in this case. Similar to above, maximization of the likelihood L=Пk p(X(k), Y(k)) can be achieved by either 

Newton-Raphson or EM algorithm.  

Next we show how Eqs.(13) and (14) are related to calculate the coefficients of type I and type II  functional 

divergence. Since type II functional divergence results no altered functional constraints between two clusters, it can 

be interpreted as the functional divergence configuration S1=(F1, F0, F0), i.e.,  cluster 0 is under F1, but clusters 1 

and 2 are under F0. Therefore, the coefficient of type II functional divergence can be defined as θII =P(S1)=P(F1, F0, 

F0)= π1. On the other hand, type I functional divergence means that at least either cluster 1 or cluster 2 should be 

under F1, regardless of the status of cluster 0. According to table 2, the coefficient of type I functional divergence is 

given by θI =P(S2)+P(S3)+P(S4). Moreover, if the coefficient of overall functional divergence is defined as πf =1-

P(S0)=1-π0, we have 

(15) 
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Thus, π0 can be called the coefficient of functional constraint of the gene family. 

 

Predicting critical residues for functional divergence 
It is of great interest to (statistically) predict which sites are likely to be responsible for these type I and type II 

functional differences. Indeed, these sites can be further tested by experimentation, using molecular, biochemical or 

transgenic approaches. We will develop site-specific profiles for this purpose, which can be achieved by the 

posterior analysis. 

 

Type I functional divergence predicted from the subtree likelihood 

For the simple two-cluster case, there are only two nondegenerate states: S0 and S1. We wish to know the probability 

of S1 for a given site when the amino acid configuration (X, Y) is observed, i.e., P*(S1|X, Y). The prior probability of 

S1 is P(S1)= π1=θI. According to the Bayesian law, we have 

  (16) 

where f*(X, Y|S1) and p*(X, Y) are given by Eqs.(4) and (5), respectively. 

Now we consider the case of multiple clusters. Similarly, when the amino acid configuration (X) at a site is given, 

the posterior probability of each functional divergence configuration Si can be generally expressed as follows  

(17) 

Where πi=P(Si) is the prior probability of state Si. When n=2, Eq.(17) is reduced to Eq.(16).  

 

For a large gene family with little knowledge about its functional diversity, a site-specific measure for the overall 

level of type I functional divergence at each site is useful. Since the coefficient of overall functional divergence of a 

gene family is defined as πf=1-π0, where π0=P(S0) for S0=(F0,…,F0), it is natural to define such measure as 

P*(F1|X)=1-P*(S0|X). According to Eq.(17), it is given by 

      (18) 

Type I and type II functional divergence 

             Based on the whole-tree likelihood for functional divergence, we can develop a site-specific profile for type 

I as well as type II functional divergence. In the case of two-clusters, the posterior probability of each 

(nondegenerate) combined state Si (table 2) can be computed as  

(19) 

where πi=P(Si), and f(X, Y|Sj) is given by Eq.(13). Thus, one can easily show that site-specific profiles for type I and 

type II functional divergence are given by 

(20) 

respectively. 
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Unit-4 
 

Type-II Functional Divergence after Gene Duplication  
 

 
 
Introduction 
        According to the theory of molecular evolution (Kimura 1983), an amino acid residue is said to be functionally 

important if it is evolutionarily conserved. Therefore, change of the evolutionary conservation at a particular residue 

may indicate the involvement of functional divergence (Lichtarge et al, 1996; Gu 1999). Following this idea, many 

research groups have developed statistical methods for testing and predicting the functional divergence of a gene 

family, which indeed showed the association between sequence and functional or structural divergence (e.g., 

Lichtarge et al, 1996; Gu 1999, 2001; Gaucher et al. 2002; Landgraf et al. 2001; Wang and Gu 2001; Knudson and 

Miyamoto 2001; Lopez et al. 2002; Jordon et 2002; Gribaldo et al 2003; Gu et al 2003; Madabushi et al. 2004; Gao 

et al 2005; Rastogi and Liberles 2005;  Zhou et al. 2006).  

        Gu (2001) made a distinction between two types of functional divergence. Type-I functional divergence results 

in site-specific rate shift (Gu 1999; Gaucher et al. 2002; Landgraf et al. 2001; Knudson and Miyamoto 2001; Lopez 

et al. 2002). A typical case is an amino acid residue that is highly conserved in a subset of homologous genes but 

highly variable in a different subset of those homologous genes. Alternatively, type-II functional divergence results 

in the shift of cluster-specific amino acid property (Lichtarge et al, 1996; Gu 2001). Such divergence is exemplified 

by a radical shift of amino acid property, e.g., positive versus negative charge differences at a homologous site that 

is otherwise evolutionally conserved between subtrees within a phylogeny. Note that these two types of functional 

divergence may have other names. For instance, the basic Evolutionary Trace approach (Lichtarge et al. 1996; 

Madabush et al. 2004) has mainly focused on cluster-specific residues related to type-II functional divergence. 

Gribaldo et al. (2003) also looked at type-II functional divergence as called `constant-but-different'. Meanwhile, the 

weighted Evolutionary Trace approach proposed by Landgraf et al. (2001) was similar to type-I functional 

divergence (Gu 1999). 

          In this study, we develop a statistical method for type-II functional divergence. To this end, we have to 

address two related statistical issues. First, are the type-II changes statistically significant? And secondly, for 

observed cluster-specific amino acid residues, how can we statistically measure whether they are related to type-II 

functional divergence? 

 

Modeling type-II functional divergence in the early stage 
The two-state model          

       In principle, the evolution of protein sequences of duplicate genes can be divided into two stages, the early (E) 

stage after gene duplication, and the late (L) stage (Fig.1). We assume that functional divergence between duplicate 

genes has occurred in the E-stage, while in the late (L) stage, the purifying selection plays a major role to maintain 

related but distinct functions of two duplicate genes (Ohno 1970; Kimura 1983; Force et al. 1999). Accordingly, we 

modify the two-state model (Gu 1999; 2001) specific to type-II (cluster-specific) functional divergence: 

(i) In the early (E) stage, an amino acid residue can be in either of two states: F0 (type-II unrelated) and F1 (type-II 

related). The probability of a residue being under F1 is P(F1)=θII, and that being under F0 is P(F0)=1-θII, 

respectively. To distinguish it from the type-I functional divergence (Gu 1999), we call θII the coefficient of type-II 

functional divergence. 

 

(ii) In the late (L) stage, an amino acid residue is always under the state of F0, indicating no further type-II functional 

divergence. Amino acid substitutions in this stage are mainly under purifying selection.  

 

Substitution models under F0  

The pattern of amino acid substitutions during evolution, or the substitution model, relies on the states of 

functional divergence (F0/F1). The F0-substitution model largely reflects the conserved evolution of protein 

sequences, which can be empirically determined by the Dayhoff model, or the JTT model. In contrast, under F1, 

radical amino acid substitutions may occur more frequently, apparently due to the functional divergence between 

duplicate genes (Lichtarge et al. 1996). To avoid over-parameterization, we propose a simple F1-substitution model 

that can distinguish between the radical and conserved amino acid substitutions. First, we tentatively classify twenty 
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amino acids into four groups: charge positive (K, R, H), charge negative (D, E), hydrophilic (S, T, N, Q, C, G, P), 

and hydrophobic (A, I, L, M, F, W, V, Y). An amino acid substitution is called radical (denoted by R) if it changes 

from one group to another; otherwise it is called conserved, i.e., within the group, denoted by C. The status of no 

substitution is denoted by N.  

Secondly, we assume that, under state F0, the transition probability for a radical, conserved, or no 

substitution, is given by 

(1) 

respectively, where t is the evolutionary time, λ is the substitution rate, and πR (or πC) is the proportion of radical (or 

conserved) substitutions in the total substitutions; πR+πC=1. Apparently, Eq.(1) is an extended Poisson model of 

protein sequence evolution. Based on the Dayhoff PAM matrix, we empirically determined πR=0.312 and πC=0.688. 

Indeed, without any functional divergence, conserved amino acid substitutions are more likely to occur, as expected 

by the theory of neutral evolution (Kimura 1983).  

 
 

Substitution models under F1  

Next we consider the transition probabilities under F1 in the early stage, denoted by P(Y|F1) for Y=N, R, C. It 

should be noted that, according to our model (see above), an amino acid residue that has no change in the early stage 

is essentially unrelated to the type-II functional divergence. This argument implies P(N|F1)=0. Together, one may 

write  

(2) 

That is, aR (or aC) is the (F1)-proportion of radical (or conserved) substitutions in total substitutions. Moreover, the 
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F1-radical amino acid substitution (aR) can be much higher than that under F0 (πR), as will be shown later. 

 

Evolutionary link between early and late stages 
The evolutionary link between early and late stages depends on the status of type-II functional divergence. 

Let  λE and λL be the evolutionary rates in the early (E) and late (L) stages, respectively. The statistical framework 

we developed is under the following assumptions: 

(i) A random variable u, called the rate component, varies among sites according to a standard gamma distribution 

(3) 

The shape parameter α describes the strength of rate variation among sites, that is, a small value of α means a strong 

rate heterogeneity among sites, and α=∞ means no rate variation among sites. 

  

(ii) Under F0, the evolutionary rates in the early (λE) and late (λL) stages share the same rate component u. That is, 

λE=c1u and λL=c2u, where c1 and c2 are constants. 

 

(iii) F1-amino acid substitutions in the early stage is independent of the rate component u, as indicated by Eq.(2). In 

other words, F1-amino acid substitutions have escaped from the ancestral functional constraint on the protein 

sequence. 

 

Two clusters by gene duplication 
Consider the typical case of two clusters generated by a gene duplication event, each of which consists of 

several orthologous genes (figure 1).  Let X be the amino acid pattern of the late stage, the column (site) of the 

multiple alignment of the sequences. Let Y=(a, b) be the amino acid pattern of the early stage, the ancestral 

sequences of two internal nodes a and b. From the assumption (ii), the joint probability of X and Y under F0 is given 

by  

 
where P(Y|F0) is determined by Eq.(1) for Y=N, C or R, respectively, and P(X|Y) is the likelihood of the subtrees of 

two clusters A and B, conditional on the ancestral states a and b, which can be constructed according to the Markov-

chain property under a known phylogeny (Felseinstein 1981; Gu 2001). Similarly, from (iii), under F1 we have  

 
where P(Y|F1) is given by Eq.(2). Remembering that the probability of a site being under F1 is given by P(F1)=θII, 

the coefficient of type-II functional divergence, we have the joint probability for X and Y as follows 

(4) 

Direct application of Eq.(4) for estimating θII may face some difficulties because the amino acid pattern of early-

stage (Y) is unobservable. A straightforward solution is to invoke the ancestral sequence inference, e.g., Yang et al 

(1995). Treating the ancestral sequences as inferred observations, the standard procedure for the likelihood analysis 

of protein sequence can be applied.  In spite of nice statistical properties, it requires a detailed description of the 

model and sensitive to the statistical uncertainty in ancestral sequence inference. To solve this problem, we thus 

propose a simple but robust method that is computationally efficient, allowing a genome-wide analysis.  

 

Poisson-model in the late-stage 
Testing type-II functional divergence between two gene clusters (the early-stage) utilizes the within-cluster 

amino acid patterns to examine the conservation in the late-stage. Therefore, a Poisson-based model that counts the 

number (k) of substitutions may be sufficient for this purpose, where smaller values of k of substitutions in a gene 

cluster indicate high conservation. Formally, at a given amino acid residue, the number of substitutions in each 

cluster (A or B) follows a Poisson process, e.g., for cluster A, we have  

(5) 

with the same applying to pB(k), where TA (or TB) is the total evolutionary time of cluster A (or B), and λA and λB is 

the evolutionary rate of cluster A (or B), respectively. Hence, the early-late joint distribution can be specified as 
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fij,Y=P(X=(i,j), Y), where i or j is the number of substitutions in cluster A or B. Under this model, P(X|Y)=pApB, which 

is independent of the early stage Y. Similar to the derivation of Eq.(4), we have  

 
Together, one can show the early-late distribution under the Poisson-based model is given by 

(6) 

where P(Y|F0) is from Eq.(1), and P(Y|F1) from Eq.(2); here aN=P(N|F1)=0. 

 

Analytical form of the early-late distribution 
          First we consider the late-stage distribution, fij, the probability for i and j substitutions in clusters A and B, 

respectively. From Eq.(6), one can show that  

 
which is a specific version of bivariate negative binomial distribution, 

(7) 

where Z=α/(DA+DB+α), ZA=DA/(DA+DB+α, and ZB=DB/(DA+DB+α); DA=E[λA]TA and DB=E[λB]TB be the total 

branch lengths of clusters A and B, respectively, and α is the gamma shape parameter.  

 

Next we consider the early-stage distribution fY, the frequencies of three early-stage amino acid patterns for Y=N, R 

or C. Since fY=Σi,jfij,Y, from Eq.(6) one can show  

(8) 

and fN=1-fR-fC. Moreover, let p=fR+fC be the proportion of amino acid differences (either radical or conserved) in the 

early stage, which is given by 

   (9) 

where d=E[λ]t is the branch length of the early stage. Define W=α/(DA+DB+d+α), WA=DA/(DA+DB+d+α), and 

WB=DB/(DA+DB+d+α). Finally, we have shown that the joint distribution of early-late stages, fij,Y, can be expressed 

as follows.   

(10) 

 

where Mij is given by 

(11) 

 

Estimation procedure  
            Based on the likelihood principle, we have implemented the following algorithms to estimate unknown 

parameters for testing type-II functional divergence. Here we always assume that the phylogenetic tree of the gene 

family is known or can be reliably inferred.  

 

Late-stage likelihood: The distribution of late stage Qij is the probability of a site being i and j substitutions in the 

two clusters. As shown by Eq.(7), Qij depends on three (late-stage) parameters DA, DB and α. We thus modified the 

likelihood method of Gu and Zhang (1997) to estimate them simultaneously, DA^, DB^ and α, respectively. Note that 

the algorithm of Gu and Zhang (1997) corrected the parsimony bias in counting the number of substitutions.     
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Likelihood for estimating early-stage parameters: Let nij,Y be the number of site with the pattern X=(i, j) and Y=N, Y 

or C. After treating three late-stage parameters as known, we develop a simple likelihood to estimate early-stage 

parameters θII, aR/aC, and d. From Eq.(10), we have fij,S=fij,R+fij,C=Qij-(1-θII)Mij=Qij-fij,N. Let nij,S=nij,R+nij,C. Thus, the 

log-likelihood function 

(12) 

includes two unknown parameters θII and d. Let N0=Σi,j nij,N be the total number of sites that have no change in the 

early stage. Under the p-constraint of Eq.(9), the ML estimate of θII is given by θII^=1/(1-y), where y is the solution 

of  

(13) 

with d=-ln(1-p)+ln(1-θII). (Note that Mij depends on the parameter d, while Qij only depends on late-stage parameters 

that are treated as known). The iteration can start with the initial values of d(0)=-ln(1-p) until convergence. Let L be 

the sequence length, fij,S^=nij,S/L and f0^=N0/L. The sampling variance of θII ^a can be calculated as follows 

      (14) 

where a=Σi,j fij,S Mij
2/(Qij-Mij+MijθII

2. When the estimates of θII and d are obtained, aR can be estimated from Eq.(8).  

The proportion of amino acid differences between the internal nodes a and b represented by p can be computed 

as follows. First, we use the Bayesian algorithm (Yang et al 1995) to infer the ancestral sequences of Y. Then we 

estimate p when each site in the inferred ancestral sequence receives the assignment of amino acid with the highest 

posterior probability.  

 

The U-likelihood: This method utilizes amino acid sites that are universally conserved in both clusters, i.e., i=j=0. 

Let n00Y be the number of sites with Y=N (the U-type), R, or C, respectively. Let n00=n00N+n00R+n00C, and 

f00=f00N+f00R+f00C.Then, the log of U-likelihood can be written as  

(15) 

Let f00N^=n00N/N. Similar to above, we have shown that the ML estimates of θII and d are given by 

(16) 

The sampling variance of the estimate θII^ is Var(θII)=f00N(1-f00N)b2/N, where b=[(1+DA+DB+d)/α]α. Since the U-

method largely relies on the universally conserved sites, it seems robust against the inaccuracy of ancestral sequence 

inference and sequence alignment.   

 

Predicting critical amino acid residues: Empirical Bayesian approach 
The identification of which sites are responsible for these type II functional differences is of great interest, if 

the coefficient of functional divergence (θII) between early and late stages is significantly larger than 0. Here we 

develop a method of predicting such sites, which indeed can be further tested by experimentation, using molecular, 

biochemical or transgenic approaches.  

We wish to know the probability of state F1 in the early stage at a site, i.e., P(F1|X,Y). According to the 

Bayesian law, we have 

(17) 

where the prior probability of F1 in the early stage is given by P(F1)=θII. Under the Poisson-based model,  

P(X=(i, j),Y|F1) and P(X=(i, j),Y|F0), and P(X=(i, j), Y) are given by Eqs.(5) and (7), respectively. Noting that aY=0 if 

Y=N, one can show 
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(18) 

 

One may find it is simple to use the posterior probability ratio of F1 to F0, i.e., R(F1|F0)=P(F1|X,Y)/P(F0|X,Y). After 

some algebras, we obtain  

   (19) 

 

where h=d/(DA+DB+d+α).  

An important result from Eq.(19) is that the posterior ratio R(F1|F0) reaches its maximum if there is no 

amino acid substitution in each gene cluster but the amino acid is different between them, i.e., i=j=0 and Y≥ N. As 

usually observed, and assuming that the proportion of radical changes under F1 is higher than that under F0 such that 

aR/aC>πR/πC, we have 

(20) 

Hence, a typical cluster-specific site indeed will receive a highest score for the type II functional divergence, 

consistent with the intuitive biological interpretation. However, it should also be indicated that a high score could be 

statistically meaningless if θII is not significantly larger than 0. Finally, we note that R(F1|F0)max→∞ if h→0. This 

means that greater accuracy is achieved as more sequences are analyzed (i.e., increasing DA or DB). In practice, one 

may use this property to determine how many sequences are sufficient to achieve the statistical resolution of site 

prediction.   
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Type-II Functional Divergence after Gene Duplication: GPCR 
Gene Family Analysis  

 
 
 
Introduction 
Drug-design and side effects 

          Precision medicine enables the development of targeted drugs and improvement of the therapeutic efficacy [1]. 

However, some targeted drugs are promiscuous, showing a high risk of severe side effects because they have 

unexpected targets and exhibit low specificity [2]. Cross-reactivity on protein paralogs may cause undesirable side 

effects of drugs [3]. Generated from gene duplications, paralogs are evolutionally homologous [4] and share similar 

protein sequences or structural features, thus comprising similar binding pockets with drugs. As a result, a drug that 

binds to the target protein encoded by one gene may also bind to its paralog [5]. 

         Because most drug targets are paralogs [3], controlling target specificity to minimize side effects is required to 

create novel and safer drugs. Such control may be achieved by drug design guided by paralog-discriminating features, 

known as ‘‘selectivity filters” [3]. Therefore, identifying evolutionally divergent features that enable paralog 

discrimination would be beneficial. It is well accepted that amino acids are evolution- ally conserved if they are 

functionally important [6]. Therefore, an amino acid residue is said to be functionally or structurally important if it is 

evolutionally conserved [7], whereas an evolutionally-variable residue is said to be less important. It is thus believed 

that alterations in the evolutionary conservation at a particular residue imply that this residue may have been involved 

in the functional divergence of a gene family during the evolution [4]. 

 

Functional divergence  

        Type-I functional divergence gives rise to the site-specific rate variation after gene duplication [8,9]. Typically, 

an amino acid residue related to the type-I functional divergence is highly conserved in one duplicate gene, but 

highly variable in the other one. Drug binding sites tend to be functionally important. If a drug targets the conserved 

residue of type-I functionally-divergent site in one paralog, its binding to the non-conserved residue in another 

paralogs would be avoided. Therefore, the alteration in evolutionary conservation resulting from type-I functional 

divergence can distinguish one paralog from another, which may reduce the occurrence of cross-reactivity. 

       Type-II functional divergence brings about the change of site-specific property. Typically, amino acid residues 

are highly evolutionally conserved within each cluster of orthologous genes, i.e., both residues play vital roles 

functionally or structurally for this gene family. However, a radical change of amino acid property at a homologous 

site occurred between the two duplicate genes. For example, one residue is positively- charged in a gene but its 

homologous residue in the duplicated gene is negatively-charged [10,11]. If a drug is designed to be negatively-

charged, it can bind to a positively-charged residue in one paralog, but not the negatively-charged one in another 

paralog. A shift in key physicochemical properties relevant to ligand binding interactions may result in alterations in 

binding features or affect the druggability of protein targets [12]. Therefore, type-II functional divergence features in 

physicochemical properties between paralogs can be exploited as selectivity filters to function as targetable 

differences [13]. 

 

G-protein coupled receptors (GPCRs) 

        The known target protein receptor family of G-protein cou- pled receptors (GPCRs) contributes significantly to 

side effects [14]. GPCRs constitute one of the largest families of membrane proteins with approximately 800 

members encoded in the human genome [15]. According to the GRAFS classification system, GPCRs fall into five 

categories, including glutamate (G), rhodopsin (α, β, γ and δ) (R), adhesion (A), frizzled/- taste2 (F), and secretin (S) 

families [16]. It is estimated that 30%–40% of all drugs currently on the market target GPCRs [17]. Since the gene 

members of this superfamily arose from gene duplication [18], these gene targets are rich in paralogs. 

 

Functional role difference between paralog GCGR and GLP-1R 

         This study aimed to reduce the side effects caused by paralogs. Glucagon receptor (GCGR) and glucagon-like 
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peptide-1 receptor (GLP-1R), two clinically validated drug targets in patients with type 2 diabetes, were used as an 

example. The glucagon-like subfamily belongs to secretin type GPCRs and is rich in clinically validated targets 

[18]. This subfamily constitutes 4 hormone receptors duplicated from the early stage of vertebrates [19]. These 

receptors play crucial roles in hormonal homeostasis in humans and other animals and serve as important drug 

targets for several endocrine disorders [20]. Among them, GCGR and GLP-1R appear to have greater therapeutic 

potential in diabetes than other members [21–23]. Thus, we focused on GCGR and GLP-1R for further 

investigation. 

         GCGR shares high homology with GLP-1R, showing where 54% and 46% sequence identities in the 

transmembrane and extracellular domains, respectively [24,25]. In addition, the corresponding ligands for GCGR and 

GLP-1R, glucagon and GLP-1, are also highly conserved in sequence [26]. It has been hypothesized that GLP-1 

bound to GCGR and exhibited glucagon-like action in fish, but later it acquired unique incretin functions [27]. In 

humans, the tissue expression profile of GCGR and GLP-1Ris different. GCGR is actively expressed in liver and 

kidney, whereas GLP-1R has relatively high expression in pancreas. This agrees with the fact that glucagon acts 

primarily on hepatic GCGR to increase plasma glucose, while GLP-1 functions during nutrient ingestion at 

pancreatic b-cell GLP-1R to enhance insulin synthesis and secretion [25]. These two hormones have significant but 

opposing roles in regulating glucose homeostasis and are clinically important in the management of diabetes [28]. 

GLP-1 affects blood glucose, b-cell protection, appetite, and body weight, which has led to the use of multiple 

GLP-1R agonists for the treatment of type 2 diabetes [29]. In contrast, glucagon is used to treat severe hypoglycemia 

[30], while GCGR antagonists have been developed to treat type 2 diabetes. Thus, GCGR and GLP-1R show 

divergent ligand binding profiles and are selective in hormone action, although they are highly homologous and 

show conserved structures and sequences. Therefore, when GCGR antagonists wrongly target highly homologous 

GLP-1R in patients with type 2 diabetes, these drugs may lose their efficacy and fail to control the release of glucose 

by GCGR. Moreover, the unexpected binding of these drugs to GLP-1R might interfere with function of GLP-1R, 

thus leading to the decreased insulin secretion. As a result, anti-diabetes drugs targeting one of these two paralogous 

receptors at con- served sites may also target the other one by mistake, resulting in cross-reactivity and generating 

unexpected side effects. 

 

 
 

Usage of type-II functional divergence features as targetable difference of drugs 
          To avoid undesirable side effects driven by drug interactions with conserved residues of paralogs, we 

analyzed type-II functional divergence between GCGR and GLP-1R to identify residues conserved in functional 

constraints but different in physicochemical properties. Based on the neighbor-joining phylogenetic tree (Figure 

1A), we estimated the coefficient of type-II functional divergence (denoted by θII) between GCGR and GLP-1R: 

θII=0.236 ± 0.052, which is significantly higher than 0 (P < 0.001). A large value of θII indicates a high level of type-

II functional divergence, and vice versa. Rejection of the null hypothesis θII= 0 means that after gene duplication, the 

evolutionary rate has become different between the duplicate genes at some residues. Some amino acid residues that 

were evolutionally conserved in both GCGR and GLP-1R across different species may have radically changed their 

amino acid properties. Furthermore, we used the posterior probability QII(k) to identify amino acid residues critical 
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in type-II functional divergence between these two paralogous genes (Figure 1B). Using an empirical cutoff of QII 

(k) > 0.67, we identified 8 type-II functional divergence-related residues between paralogous GCGR and 

GLP-1R. These included E34, S150, N291, Q337, F345, F387, K405, and E427 in GCGR. The site-

specific ratio profile indicated that most residues had low posterior ratios and only a small portion of 

amino acid residues were involved in this type of functional divergence. Moreover, these 8 amino acid 

residues showed a typical pattern of type-II functional divergence (Figure 1C). They showed a high 

sequence conservation at paralogous sites (Figure 1D). We sized down the posterior probabilities of these 

sites and found that using lower posterior probability as cut-off value (such as 0.54) would screen out 

residues that were not presented in typical conservation pattern of type-II functional divergence (data not 

shown). Thus, we used these 8 type-II functional divergence-specific sites for further analysis about their 

roles in paralog discrimination. 

 
Type-II functionally-divergent residues in binding sites of anti-diabetic drugs 

           The issues of cross-reactivity arising from paralogs have been long concerned. Identifying paralog-divergent 

features as tar- getable difference might be helpful in paralog discrimination and has already been implemented in 

therapeutic drug design [31]. The GCGR antagonist MK-0893 is used to treat patients with type 2 diabetes to 

substantially reduce fasting and postprandial glucose concentrations [31]. MK-0893 acts at allosteric binding sites 

of the seven transmembrane helical domain (7TM) in positions among TM5, TM6, and TM7 in GCGR (Figure 2A). 

TM6 plays a role in splitting the binding sites into two different interaction regions. The TM5-TM6 cleft contains 

L329, F345, L352, T353, and the alkyl chain of K349, making hydrophobic contacts with one part of MK-

0893. On the other hand, the TM6-TM7 section forms polar interactions with the other part of MK-0893 by hydro- 

gen bonds with K349, S350, L399, N404, and the backbone of K405, as well as additional salt bridge with 

R346. Thus, the different physicochemical properties function in the binding activity of the dual-nature antagonist 

MK-0893 to GCGR (Figure 2B). We found that our predicted sites of type-II functional divergence between GCGR 

and GLP-1R, F345 and K405, were significantly enriched in the binding sites of MK- 0893 to GCGR (P < 0.05; chi-

square test). 

 
        To figure out the key difference in paralogous residues between GCGR and GLP-1R, we analyzed the 

sequence conservation in the binding sites of MK-0893 to GCGR and com- pared them with their equivalent sites 

in GLP-1R. The results showed that the type-II specific sites F345 and K405 had a radical shift in physicochemical 

properties, while other binding sites were highly conserved either in functional constraints or physicochemical 

properties between the two paralogs GCGR and GLP-1R (Figure 2C). F345 and K405, showed a typical pattern 

of type-II functional divergence. They were both conserved residues in their orthologous gene families, but were 

different in their physicochemical properties between paralogous GCGR and GLP-1R. F345 was hydrophobic in 

GCGR but its equivalent site in GLP-1R is hydrophilic. If a molecule of drug is designed to be hydrophobic, it 

tends to bind to the hydrophobic F345 in GCGR rather than the hydrophilic residue in GLP-1R. Another type-II 

specific site K405 was positively-charged in GCGR while its equivalent site in GLP-1R was electrically neutral. 

Thus a molecule of drug designed to be negatively-charged are more likely to interact with positively-charged 

K405 in GCGR instead of binding to the electrically neutral residue in GLP-1R. Because the physio- chemical 

properties of amino acids play an important role in the interaction of protein receptors with their ligands (small 
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molecules, peptides, agonists, and antagonists), changes in their physicochemical nature and conformation may 

reduce cross-reactivity due to the binding of antagonist drugs to unexpected paralogs. Therefore, determining type-

II functional divergence-related sites between two paralogs is effective for identifying targetable differences in 

therapeutic drug design. 

          Moreover, we investigated the binding of ligand and agonists to GLP-1R and evaluated the role of type-II 

functionally-divergent sites between GCGR and GLP-1R in this study. We identified a type-II functional divergence- 

related residue D293 within human GLP-1R in the second extracellular loop (EC2) (Table S1). D293 showed a typical 

pattern of type-II functional divergence. This residue is con- served in orthologous gene families of GLP-1R and is 

functionally important. It had ligand-specific effects on GLP-1 peptide-mediated selective signaling and was critical 

for agonist-mediated receptor activation [32]. Residue D293 of EC2 directly interacted with key residues in the ligand 

through hydrogen-bonding interactions (Table S1). A previous study [33] demonstrated that D293A mutation 

reduced GLP-1 affinity and altered the binding and efficacy of agonists such as oxyntomodulin and exendin-4 [34]. 

As a type-II functionally important site, D293 in GLP-1R showed different physicochemical properties from its 

equivalent site N291 in paralogous GCGR. The amino acid property changes from negatively-charged in GLP-1R to 

electrically neutral in GCGR, which can serve as a selective filter for telling apart GLP-1R from GCGR. Thus, the 

application of divergence features of type-II functional divergence between these two paralogs is advantageous in this 

respect. 

 

Using type-I functional divergence features as targetable difference of drugs 

            Besides type-II functional divergence, type-I functional divergence between paralogs might also be exploited 

to achieve targetable differences. We thus investigated the role of residues related to type-I functional divergence in 

the binding of ligand and agonists to GLP-1R. To do so, we computed the coefficient of type-I functional divergence 

(denoted by θI; θI= 0 for the null hypothesis) between GCGR and GLP-1R. We got θI= 0.4902 ± 0.1072, which 

was significantly higher than 0 (P<0.001), indicating the occurrence of type-I functional divergence between two 

paralogs. We identified a type-I-related residue E294 in the binding sites of GLP-1R. E294 is a functionally 

important site for the signaling mechanism and receptor activation [32]. It is highly conserved in one cluster of 

orthologous GLP-1R family but appears as diverse amino acids at paralogous sites in GCGR. Therefore, the type-I 

functional divergence-related residues might play vital roles in drug binding sites for discrimination of two 

paralogs for tighter specificity control of drugs. 

 

Usage of variable residues as targetable difference of drugs 
           Not all binding sites of drugs have been designed to exploit the type-I or type-II functional divergence features 

as discriminating factors between paralogs. We therefore investigated more examples to see whether residues other 

than type-I or type-II functionally-divergent residues can achieve targetable difference between paralogs. We 

examined GCGR antagonist antibodies mAb1, mAb23, and mAb7 that target the ligand- binding cleft in the N-

terminal extracellular domain, where the cleft is typically structurally important in ligand binding for secretin type 

GPCRs [35]. Our sequence conservation analysis of these antagonists illustrates that most binding-site residues 

showed significant conservation between paralogous GCGR and GLP-1R  (P = 0.0003, 0.02,  and 0.002 for 

mAb1, mAb23, and mAb7, respectively; chi-square test. Besides the most conserved residues, there are also some 

variable residues other than type-II or type-I specific residues in the binding sites. Mutations at these variable residues 

lead to structural differences such as a shift or changes in orientation of some side chain residues, thus resulting in 

reduced receptor activation and even prevention of ligand binding [36]. Therefore, these variable residues differ from 

one paralog to their equivalent sites in another paralog, while other residues in the binding sites are highly 

conserved either in sequence or in physicochemical properties. This implies that there may be underlying 

mechanisms involving variable residues in the discrimination of GCGR and GLP-1R. 

 

 

Identification of functional divergence of druggable paralogs in GPCRs 
             Inspired by the usage of functional divergence features in improving drug selectivity between paralog 

GCGR and GLP-1R, we hypothesized that these features might be applied to other paralogs of GPCRs in drug 

design. We thus extended to all targetable GPCRs and investigated their types of functional divergence between each 

paralogous gene pair. We identified 83 drug targets in total in GPCRs superfamily based on the published data on 

human druggable protein tar- gets (Figure 3). We found that these targets are mainly enriched in rhodopsin, 

glutamate, and secretin subfamilies, which have been revealed to bind to various types of ligands and are targeted 

for drug design [17]. Among these 83 targets, 6 and 8 targets belong to the secretin and glutamate subfamilies, 
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respectively, while others are found in 4 subgroups of rhodopsin subfamily. Interestingly, receptors in adhesion 

and frizzled/taste2 subfamilies are not found as drug targets. The majority of receptors in these two subfamilies 

remain orphans, and few attempts have been made to target these two classes. 

             Based on the two types of functional divergence between each paralogous pair in each subfamily, we 

found that, within 465 duplicated gene pairs, 267 pairs of paralogs have undergone functional divergence during 

the evolution. Among them, 67 pairs of paralogs showed only type-I functional divergence and 55 pairs showed 

only type-II functional divergence, whereas 145 pairs showed both two types of functional divergence (Table 

S3). Due to the lack of public data on drug binding sites for many targetable receptors in GPCRs family, we were 

not able to test the functional divergence features of all paralog pairs for verification. However, the site score for 

probability to be associated with type I or type II functional divergence is shown for each position on the 

multiple alignment of these paralogous gene pairs (Table S4). We systematically evaluated the large-scale 

functional divergence of each pair of paralogs in GPCRs to conclude the profiles of type-I or type-II related 

amino acid residues in every duplicated gene. These observations could be taken into consideration when designing 

conserved residues as drug binding sites (Table S5). 

 

 

 

 

 

 

 


