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Unit-1

Type-l Functional Divergence after Gene Duplication: the
Poisson-based Model

Introduction

Many organisms have undergone genome wide or local chromosome duplication events during their evolution
(Ohno 1970). Consequently, many genes are represented as several paralogs in the genome with related but distinct
functions. These gene family proliferations are thought to have provided the raw materials for functional
innovations.

An understanding of the functional diversity of a gene family has been a major component in molecular evolutionary
study. Extensive studies have been reported on the underlying mechanism of functional divergence after gene
duplication. Ohno (1970) proposed that following gene duplication, one gene copy maintains the original function,
while the other copy is free to accumulate amino acid changes as a result of functional redundancy or positive
selection. Unless this type of functional divergence results in some new functions, over time all but one gene copy
will be silenced by deleterious mutations. Hughes (1994) speculated that the ancestral gene might already be
bifunctional and gene duplication simply allows each copy to specialize for one of several functions. Having
realized the importance of coevolution between the interacted molecules (e.g., ligand/receptor), Fryxell (1996)
argued that functional divergence may occur only when all genes in a pathway are duplicated simultaneously, e.g.,
by a genome duplication. It becomes clear that some evolutionary changes in the coding and/or regulatory regions
after gene duplication must be responsible for the functional differences between members of a gene family.

An interesting question is whether we can identify these important amino acid (or nucleotide) sites; the methods for
doing so may have great potential for functional genomics since they are cost-effective, and the predictions obtained
can be further tested by experimentation. For example, one may infer amino acid sites that have experienced altered
functional roles in a period of evolution. Gu (1999) developed a stochastic model for the functional divergence after
gene duplication, which can estimate the level of functional divergence from sequence data, and predict important
amino acid residues for these functional differences between member genes of a gene family. The method
distinguish between these changes related to functional divergence and the background changes which mainly
represent neutral evolution.

Functional Divergence and Altered Functional Constraint

A (homologous) gene cluster is defined as a monophyletic group of sequences under a phylogenetic tree. For
example, two gene clusters are generated by an event of gene duplication, and each of them consists of several
orthologous sequences (fig. 1A). It is commonly believed that after gene duplication, the evolutionary rate (I) at an
amino acid site may increase and functional divergence may occur in the early stage, followed by the late stage, in
which purifying selection plays a major role in maintaining related but distinct functions (fig. 1B). The underlying
mechanism for this type of accelerated evolution after gene duplication is still in dispute. If the early-stage
functional divergence occurred in one duplicate gene, changes of functional roles at the sites involved can be
observed in the late stage. As a result, evolutionary rates at these sites are different between the two gene clusters.
Such functional divergence, resulting in altered functional constraint, is called type | functional divergence.

The central tenet is that type | functional divergence after gene duplication is highly correlated with the
change in evolutionary rate, which is analogous to a fundamental rule in molecular evolution: functional importance
is highly correlated with evolutionary conservation (Kimura 1983). Alternatively, type Il functional divergence does
not result in different functional constraints between the two gene clusters, but evolutionary rates can be different
between early and late stages (fig. 1B). For example, cluster-specific residues may be subject to this type of
functional divergence. In this paper, we deal mainly with type | functional divergence; type Il functional divergence
will be discussed elsewhere. The relationship between functional divergence, altered functional constraint, and



evolutionary rate provides a theoretical basis for modeling the type | functional divergence during sequence
evolution
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FIG. 1.—4, Two gene clusters after gene duplication; E and L represent early and late stages of gene cluster 1, respectively. B, Type I and
type II functional divergences after gene duplication. In the early stage. the evolutionary rate (say, in cluster 1) may increase for functional-
divergence-related change, but in the late stage, it may be higher (or lower) than the original rate, resulting in altered functional constraints
between clusters 1 and 2 (type I functional divergence). If the rate in the late stage is the same as the original one again. no altered finctional
constraints between clusters 1 and 2 can be observed (type II functional divergence).

A Simple ‘“Model-Free’” Method Rate Correlation between Two Gene Clusters

If all sites have experienced no functional divergence after gene duplication, the two duplicate genes have no altered
functional constraints, so the evolutionary rate of a site is always the same (or proportional) between them, i.e., the
coefficient of rate correlation (over sites) is 1. Obviously, altered functional constraints caused by functional
divergence will reduce the rate correlation. Consider a multiple alignment of amino acid sequences containing two
gene family members (fig. 1). If orthologous sequences are functionally equivalent, the evolutionary rate () of a site
remains constant (or proportional) among branches within a gene cluster, although it may vary among sites. Since a
molecular clock is not assumed, lineage-specific factors such as generation time effect (Wu and Li 1985) will not
affect the results. Hence, without loss of generality, the evolutionary rates in gene cluster 1 and gene cluster 2 are
simply denoted by 1; and A, respectively. The altered functional constraints between two gene clusters can be
measured by the coefficient of rate correlation between 1; and 4z,

V Var(M)Var(re)

Ty =
1

where Var(41), Var(42) and Cov(Z1, A2) are the variances and covariance of A1 and /,, respectively. If there is no
functional divergence after gene duplication, 11=1; otherwise, 11<1. Therefore, a convenient measure for functional
divergence can be simply defined as
By=1-r
A A (2)
As 6; increases from 0 to 1, the functional divergence increases from very weak to extremely strong. In this sense, 6;
is called the coefficient of functional divergence.

The Poisson Model for Amino Acid Substitutions

To avoid confusion, the term ‘‘model-free’” means that there is no specific model for rate variation among
sites and rate correlation between gene clusters; the method does require a model for amino acid changes at a site. A
simple model is the Poisson process: at a given site, the number of amino acid changes (Xi, i=1, 2 for gene clusters 1
and 2, respectively) follows a Poisson distribution, i.e., the probability of X;=k is given by

k
]J,UL) — ()\1,];) (jf)\gT;, i=1,2
k! ©)
where T1 and T are the total evolutionary times of clusters 1 and 2, respectively. In section A.1 of the appendix, we
show that the coefficient of functional divergence defined by Eq.(2) is given by
9)\ = ]. g1z

V= D)(Ve = Do) (g
where D1 and Vi (or D2 and V) are the mean and variance of the number of changes (over sites) in cluster 1 (or
cluster 2), respectively, and o12 is the covariance (over sites) between them.

To estimate 8, from equation (4), we need to know the number of changes at each site for each gene cluster

(i.e., Xg and X»). Since X; and X, cannot be directly observed from the sequence data, a conventional solution is to
use the minimum number of required changes (m) as an approximation, which can be inferred by the parsimony
under a known phylogenetic tree (Fitch 1971). However, m is a biased ‘estimate’’ for the true number of changes
because it does not consider the possibility of multiple hits. This problem has been solved by using a combination of
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ancestral sequence inference and maximum-likelihood estimation (Gu and Zhang 1997). Given a phylogeny, Gu and
Zhang (1997) have shown that the expected number of changes (X) at a given site is the nonnegative solution of the
likelihood equation

M fWL‘

' (5)
where B is the total branch length of the gene cluster, and b; is the i-th branch length, i=1, ..., M (M is the total
number of branches); di= 1 if there is an amino acid change in the i-th branch, otherwise i=0. Extensive computer
simulation has shown that the estimate of mean of expected number of changes, as well as that of variance, is
asymptotically unbiased and robust against the accuracy of ancestral amino acid inference. Two interesting special
cases are (1) X" ~m for short branch lengths, and (2) X"=-M In(1-m/M) for equal branch lengths.

Table 2

The Coefficients of Functional Divergence (#),) Between
Gene Clusters by the Model-Free Method (eq. 4) and the
Maximum-Likelihood Method Under the Two-State
Model (MLE)

Genes N Equation (4) MLE
TFATF ............ 553 026 = 0.08 0.19 = 0.07
TF~TF ............ 3553 0.13 = 0.06 0.07 = 0.03
LTF~RTF ... ...... 553 0.07 = 0.08 0.00 = 0.03
C-myc/N-mye. ...... 276 032 = 0.10 0.39 = 0.08
CmyeL-myc....... 276 0.57 = 013 0.56 = 0.12
N-mye/L-mye....... 276 039 = 0.12 040 = 0.12

NOTE—N is the total number of amino acid sites. See figures 2 and 6 for
details on each gene cluster.

Statistical Testing

When the numbers of changes at each site in both clusters (X; and X;) are obtained by Gu and Zhang’s (1997)
method, estimation of 6, is simple according to equation (4). Since 6,>0 provides evidence for functional divergence
after gene duplication, we have to test the statistical significance. Let rx be the coefficient of correlation between X;
and Xz, which is defined by

J12

rv =
Since rx reaches its maximum value ry when 6,=0, i.e.,
ry <y = /(1= Dy /Vi)(1 = DyfV3) @)

(see eg. A.9 in the appendix), the null hypothesis Ho: 8,=0 is equivalent to rx = ry. As a standard coefficient of
correlation, Fisher’s transformation can be used to compute the confidence level of rx:

1+
::=0.5111<1_;)

Let zx and zw, respectively, be the transforms of rx and ru. The sampling variance of zx is approximately V(zx)=1/(N
-3), where N is the sequence length. Under the null hypothesis (rx=rw), the Z score [Z=(zx-zm)/(N-3)°]
approximately follows a normal distribution. For example, if the Z score is |Z| >1.96, the null hypothesis 8,=0 can be
rejected at the 5% significance level. Besides, by the delta method, the approximate sampling variance of can be
computed as

(6)

9

o # 11— ’1
Var(0y) = N -3 ( T \) (8)

We should note that although rx is negatively correlated with 6, and useful for constructing a statistical test, it is not
a good measure of the level of functional divergence because it is evolutionarily time-dependent (see eq. A.14 in the
appendix)

Examples

Transferrins are iron-binding transport proteins which can bind two atoms of ferric iron Fe3*. They are
responsible for the transport of iron from sites of absorption and heme degradation to those of storage and
utilization. There is only one gene in non-mammalian vertebrates (vTF). In mammals, two close-linked tissue-
specific genes are found, which encode serum transferrin (TF) and lactotransferrin (LTF), respectively.
Apparently, this gene duplication occurred before the radiation of mammals but after the divergence between birds
and mammals. The results are summarized in Table 1.



Table 1

Analysis of Functional Divergence Between the TF and
LTF Gene Families Based on Equation (4), the Model-
Free Estimate

Gene
Clusters

(1/2) TE/LTF TEATE LTFATE
Dy . 117 1.17 0.86
Ds.. 0.86 2.20 2.20
.. 287 2.87 1.49
15 149 4.24 4.24
o 0.76 150 1.04 Table 2
rr.. 037 048 0.42 The Coefficients of Functional Divergence (0},) Between
.- 050 0.53 0.45 Gene Clusters by the Model-Free Method (eq. 4) and the
8, 026 = 0.08 013 = 0.06 007 = 0.08 Maximum-Likelihood Method Under the Two-State
P <107 <0.05 =0.10 Model (MLE)

NoTe—In the first case, TF represents cluster 1 and LTF represents cluster Genes N Equation (4) MLE
2; in the second case, TF represents cluster 1 and vTF represents cluster 2; and = -
in the third case, LTF represents cluster 1 and vTF represents cluster 2. See g}g oo 2:; 8%2 . gg: gég f gg;
figure 2 for the definitions of these three clusters. D; and F) (D, and I}) are the LTE'.-'\'TF‘ :153 0:0? ; 0:08 0:00 ; 0:03
mean and variance of the number of changes in cluster 1 (cluster 2). respectively Cmye/N-mye. ... 276 0.52 + 0.10 039 + 0.08
ery2 15 the covariance and ry is the coefficient of correlation for the numbers of Comye/L-mye. ... .. 276 0.57 + 0.13 0.56 + 0.12
changes between gene clusters 1 and 2. ry, is the expected value of r, when the N-mye/L-mye. ... .. 176 039 + 0.12 0.40 + 0.12
evolutionary rate is completely correlated (ie., r, = 1). The coefficient of rate —
correlation f, is estimated according to equation (4), and the standard error is NOTE—N is the total number of amino acid sites. See figures 2 and 6 for

given by equation (8). The significance level (P value} is computed by the meth-  details on each pene chuster
od of Fisher's transformation

Two-state model for functional divergence
The probabilistic model

Consider an ideal case in which we already know exactly which sites are related to functional-divergence.
Hence, all sites can be classified into either of two categories, Fo (functional divergence-unrelated) and F;
(functional divergence-related). In the Fo category, the evolutionary rate (1) of a site is the same between gene
clusters, indicating no change in functional constraints. In contrast, the evolutionary rate of an F; site may have no
correlation between gene clusters, because such sites have experienced altered functional constraints. However, in
practice we do not know to which category each site belongs. This problem is solved by implementing a (two-state)
probabilistic model: a given site can be in state F; with a probability of P(F1), or state Fo with a probability of P(Fo).
Using the same notations as Eq.(1), we have Cov(11, 12)= P(F1)[Var(d1)Var(12)]*° because Cov(d, A2|Fo)
=[Var(41)Var(12)]°® (completely correlated), and Cov(11, A2|F1)=0 (independent). Then, one can show that

P(F})ZI*T')\ZB,\ (9)

where r; is the rate correlation between two gene clusters as defined by Eq.(1). That is, the coefficient of functional
divergence (6,) can be interpreted as the probability of a site being in the state of functional divergence (F1).

Denoting the probability of functional divergence at site k by dx, we mention that the current two-state model
assumes that g,=1 if it is F1, otherwise 6x=0. Therefore, the expected proportion of sites to be functional divergence-
related is given by P(F1)x1+P(Fo)x0=6,. Furthermore, we assume that the evolutionary rate varies among sites
according to a gamma distribution, i.e.,

B(N) = %ﬂ))\“’le’m
' (10)

where A=41 or Ay, respectively (Uzzel and Corbin 1971). The shape parameter o describes the degree of rate variation
among sites, whereas g is only a scalar. Since 1/a is the square of the coefficient of variation of 4, the larger the
avalue is, the weaker the rate variation is, and a=oo means a uniform rate among sites.

The joint distribution of the number of changes, P(X1, X2), can be derived as follows. For any F1-site, the
evolutionary rate is statistically independent between two clusters, whereas it is completely correlated at an Fo-site.
Thus, the probability of Xi=i in cluster 1 and X,=j in cluster 2 under state Fo or F; is given by

P(X) =14,X; = j|F1) Q1 (1)Q2(7)

i, Xo=jglFo) = Kiali,j)

P(X,

11)
respectively, where



Ou(i) = P(X,—ilF)— [“ pu(B)d(A)dA;
Qi) = PGa=jlF) = [~ p()o0u)dr,
Ko = [~ pp()o)ar

It is known that Q1(i) and Qa(j) are negative binomial distributions, i.e.,

Qi) = I-i(!ill"(tr()‘) (D:'_)—:— u)i (D::’ (")”

o T+a) Dy ! o @
@U) = (u.g +a) (DngG) (12)
After some mathematical simplifications, one can show that Kix(i, j) is given by

Kynli, §) = C(i+j+a) ( D, ) ( Dy )J( o )
12\, ] L']IF((\) Di+Ds +a Di+Ds +a D+ D+« (13)

Then, the joint distribution is given by P(X1, X2)=P(Fo)P(X1, X2|Fo)+P(F1)P(X1, X2|F1), which can be expressed as

P(X1,X5) = (1 -0, K+ 0,Q1Q (14)

One can verify that the joint distribution P(X1, X2) has the following properties: (i) The marginal distribution is a
negative binomial distribution, i.e.,
P(X, =1)

ZP(X\ =1, Xy =7) = (i)

P(Xy=j) = ZP(X1 =i, Xy = J) = Qa(j)
’ (15)
and (ii) the covariance between X; and X; is given by
D] D2

T2 = (1 - 9,\) o

(16)

When one gene cluster has a single sequence

If one cluster (say, cluster 2) has only one single sequence, the joint distribution of X; and X2 needs to be
modified since X has only two states, X,=0 or 1, with probabilities Pr(X2=0)=exp(-12T2) and Pr(X;=1)=1-exp(-42T2),
respectively. In this case, the joint distribution of X; and X at an Fq site is P(X1=i, Xo=0|Fo)=K12(i,0), and P(Xy=i,
Xo=1|F0)=Q1(i)-K12(i,0). Similarly, the joint distribution of X; and X; at an F; site is P(X1=i, X2=0|F)=Q1(i)Q2(0),
and P(X1=i, X2=0|F1)=Q1(i)[1-Q2(0)]. Then, one can show the joint distribution of X; and X; as follows

P(X, =i, Xo=0) = (1—0y)K(i,0) +0,Q:(1)Q1(0)

PG =i X =1) = (1= 0)[Qi0) — Kialh, 0 + Qa1 = Qa(0)] (479

Maximum Likelihood Estimation (MLE)
Let P«(i, j) be the probability of Xi1=i and X,=j at site k, Thus, the likelihood function can be expressed as

L(x|data) = [[ Pe(Xy =i, Xy = )
ke

(18)
The parameter set x has four parameters, D1, D2, a and 6;, which can be numerically estimated by a standard
maximum likelihood approach. Since each marginal distribution follows a negative binomial distribution, we can
first use Gu and Zhang (1997)'s method for estimating the mean and gamma shape parameter for each gene cluster,
i.e., D1, ag, and D2, o. Then, the initial value for o can be simply computed by oo=(a102)°®, and the initial value for
0, by the ‘model-free’ estimate [Eq.(4)]. Using these initial values, the ML estimates of 6, and a, as well as
approximate sampling variances, can be obtained numerically. A likelihood ratio test (LRT) is constructed for
testing the null hypothesis Ho: 8,=0 v.s. Ho: 6,>0. For the likelihood ratio LR=max{L(Ho|data)}/max{L(Ha|data)}, it
is known that -2In(LR) asymptotically follows a y%;. Some examples for MLE are shown in table 2. Generally
speaking, ML estimates are slightly smaller than those of Eq.(4).



Predicting Critical Amino Acid Residues

Our results (see tables 1 and 2) have provided strong statistical evidence for the functional divergence after
gene duplication (i.e., 8,>0). Therefore, it is of great interest to (statistically) predict which sites are likely to be
responsible for these (type 1) functional differences. Indeed, these sites can be further tested by using molecular,
biochemical or transgenic approaches. We shall develop a site-specific profile for this purpose, which can be
achieved by an empirical Bayesian model.

Remember that in the two-state model, each site has two possible states, Fo (functional constraint) and F;
(functional divergence), with the (prior) probabilities P(F1)=6; and P(Fo)=1-6,, respectively. To provide a statistical
basis for predicting which state is more likely at a given site, we need to compute the (posterior) probability of state
F1 at this site with X; (and X2) changes in cluster 1 (and 2), P(F1|X1, X2). Obviously, P(Fo|X1, X2)=1-P(F1|X1, X2).
According to the Bayesian law and Egs.(11) and (14), we can show

P(F)P(Xy, X2|F) 0,010

P(F X, X,) = -
(F11X1, Xz) P(X1, X)) (1—6)) K12 + 6:Q1Q2

(19)

Then, given Xi=i and X,=j, the posterior (probability) ratio can be defined as follows

o PRIXi=iXo=7) 6 Qi)

(20)
which turns out to be

R = A T(i+a)l(j+a) (1 D, )( D, )J( B DD,
” (

1
1-6y T(i+j+a) Di+a * Dy + D1+(1-)(Dgfr(x)) (21)

We may use either Eq.(19) or Eq.(21) to identify these amino acid sites that may be responsible for the functional
divergence, given a cut-off value. In practice, the choice of a cut-off value is somewhat arbitrary, from P(F1|X1,
X2)>0.5 (Ri>1) to P(F1X1, X2)>0.95 (or R;;>20).

Appendix: some technical comments
Derivation of Eq.(4)
First we consider the Poisson process at a given site, in which the first and second moments can be expressed
as the following conditional expectations,
EX,)N] = N
E[X2N] = NT+ (NT)?
(A-1)
(i=1, 2). If there is no gene conversion or recombination between the two homologous genes, amino acid
substitutions at a site are independent between two monophyletic gene clusters and therefore,
E[Xle‘Al, )\2} = E[X1|A1] X E‘[Xﬁ_)‘)\g] (A'Z)
The evolutionary rates (11 and A2) are not only correlated but also different among sites, which in principle can be
described by a general joint distribution, ®(41, A2). To compute the mean and variance over all sites (for each
cluster), let ¢(41) and ¢(42) be the marginal distributions of ®(41, 12), which describe the rate variation among sites.
By definition, they are given by

o) = [T e

o(hs) = A (A, Ag)dNy

respectively. According to the conditional probability theory, one can show that

E[X)) = BIEIXIN]) = [~ AT6(\dx = EINT, )
A-

i=1,2, where E[Ai] is the mean rate of Ai. In the same manner, we have



E[X?] = EIN]T; + ENT?, i=1,2
(A-4)
For simplicity, let Di=E[Xi] and Vi=E[X{?]-( E[Xi])>. From Eq.(A.4) the variance of 4, Var(=E[4i?]-( E[Ai])?, is given
by
Var(N) = (Vi = Dy)/T?, i=1,2

(A-5)
Now consider the covariance between 41 and A2. From Egs.(A.1) and (A.2) we have

E[X,Xs] =TT /x MA@ (M Aa)dNdNs = Ty ToE[M As]
vo (A-6)
and therefore the covariance between X; and Xz, 612, is given by

o = TVT, Cov(A, As) (A7)

Then, from Egs.(A.5) and (A.7), one can easily show that the coefficient of rate correlation r; defined by Eq.(1) is
given by

012

(Vi = D)(Va — D,)

Ty =

(A-8)

which directly leads to Eq.(4). Since r, <1, we have
g2 < \/(Vl — D) (Va— Dy)

which means

rx = < <y = /(1= Di/Vi)(1 = Do/ V2)
’ (A-9)

A short note on rate variation among sites
The gamma distribution model for rate variation among sites assumes no altered functional constraints during
evolution, i.e., 8,=0. Here we use a simple case to show that the estimation of the shape parameter o. may be biased
if the assumption of 4,=0 is violated. In the two-cluster case (figure 1A), let X=X1+X; be the (total) number of
changes at a site. One can show that X follows a negative binomial distribution if 6,=0, i.e., no altered functional
constraints (e.g., Gu and Zhang 1997). Under this model, the variance of X is given by
2
vep+ 2
“(A-10)

where D is the mean of X. In the same manner for each cluster we have Vi=D1+D1%«, and V,=D,+D,%a. On the
other hand, we mention X=X;+X; so that D=D;+D; and V=V1+V,+2 ¢1,. From Eq.(A.8) we have

V=Vi+Va+2(1—6)y/(Vi — D1)(Va — Dy)

Therefore, if one defines a* as o*=D?/(V-D), one can easily show
[
a* = >

1—00, —

(A-11)

(A-12)
where b=2D;D/(D1+D2)?; a*=a only when 6,=0. If we use the method of moments to estimate o, under the
assumption of no altered functional constraints between these two gene clusters, we obtain a*=D?/(V-D). According
to Eq.(A.12), for the sufficient large number of sites, the following relation holds

Eld] = a* =

(A-13)



Unit-2

Type-l Functional Divergence after Gene Duplication:
Caspase Gene Family Analysis

Introduction

After gene duplication, the classical model (Ohno 1970) suggests that one gene copy maintains the original
function, while the other copy is free to accumulate amino acid changes toward functional divergence. Since then,
many specific models have been proposed (e.g., Li 1983; Clark 1994; Force et al. 1999). However, the details of
functional divergence between duplicate genes remain largely unexplored. Gu (1999) developed a method to detect
amino acid residues that contribute to functional divergence after gene duplication, which can be considered as
candidates for further experimentation. Certainly, its effectiveness for functional genomics needs to be verified by
using gene families with substantial biological/structural information.

Apoptosis, or programmed cell death, is an ordered process in which cells commit suicide when they are not needed
or are potentially harmful. The key component in the apoptotic machinery is a cascade of cysteine aspartyl protease s
(caspases). All caspases, which are initially inactive proenzymes, share the same processing scheme to achieve
mature forms after cleavage(s) at specific Asp sites. To date, at least 14 members of the caspase gene family have
been identified in mammals, which can be further classified into two major subfamilies, CED-3 and ICE. Substantial
evidence has shown that the CED-3-type caspases are essential for most apoptosis pathways. In contrast, the major
function of the ICE-type caspases is to mediate immune response, although some members may play a role in cell
death in some circumstances. X-ray crystallography has also shown a significant structural difference between these
two types of caspases. In this study, we take advantage of experimental evidence of caspases to study the functional -
structural basis of statistical predictions from Gu’s (1999) method.

g3 r HUMAN 3-alpha
HUM AN 3-bata
99 gg (RAT 3-alpha
2 RAT 3-beta CASP-3
g9 M OUSE
HAMSTER

FROG E-Casp

MQUSE GASP-T
HAMSTER . .
HUM AN CED-3 Figure 2.—The phylogenetic tree of the caspase
B RAT CASP6 . . . ...
MOUSE gene family, inferred by the neighbor-joining
CHICKEN - - - .
DROSOPHILA method on the basis of the amino acid sequence

ARMY WORM

e HUMAN ] cases i i .
; MO AN Toa with Poisson correction. Bootstrap values _50% are
o e ]C“"""" presented. Initiator caspases (I-casps) are involved in
Al SLELEGANS CEDD 1 Ligpg | 1CaSP upstream re_gulatory events, anq effector caspases
sa [— RN AN cnspaz (E-casps) directly lead to cell disassembly.
(L) 57 - MOUSE
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A Jesea ]
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FROG ICE-B -

EEl

Evolution of caspase-mediated molecular pathways
The phylogenetic tree (Figure 2) of the caspase gene family was inferred by the neighbor-joining (NJ) method.
The presence of caspases in vertebrates, arthropods, and nematodes suggests that the emergence of the caspase gene
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family might be close to or even earlier than the origin of the animal kingdom. Aravind et al. (1999) suggested that
caspase may evolve from an ancient protease supergene family, but the root of the inferred tree (Figure 2) remains
unclear. The evolutionary pattern of caspases can be generally described as follows. On the basin of the tree (see A in
Figure 2), there were at least four duplication events that had occurred during a very short time period, resulting in five
major lineages: (i) the ICE subfamily, consisting of caspase-1, -4, -5, -13, -11, and -12; (ii) caspase-14; (iii) caspase-2;
(iv) caspase-9; and (v) the common ancestor of caspase-8/-10 and caspase-3/-6/-7. In addition, the effector caspases
(E-casp-3/-7/-6) and the ancestor of caspase-8 and -10 were generated before the emergence of arthropods.
Interestingly, in contrast to the major (ancient) lineages in CED-3-type caspases, |CE-type caspases diversified recently
after the divergence of amphibians and mammals, and some of them (e.g., caspase-4 and -5) arose even after the
mammalian radiation.

Predicting critical residues for type | functional divergence between CED-3 and ICE

We estimated that the coefficient of functional divergence between ICE and CED-3 subfamilies is 0.29+ 0.05
[the ML option in Gu’s (1999) method], implying that the altered functional constraint between them is statistically
significant. Further, we use the posterior probability P(S1|X) to predict critical amino acid residues responsible for type
I functional divergence between CED-3 and ICE subfamilies. The baseline of the site-specific profile measured by
P(S1X) is 0.2-0.3 (Figure 4A). Thirty-two sites (16% of total sites) have P(S1|X)>0.5. The fact that most sites have
scores 50% indicates their similar functional roles between CED-3 and ICE.

Although posterior analysis is widely used in bioinformatics, the cutoff value for residue selection is usually
empirical. We found that when the first 21 highest-scored residues are removed from the multiple alignment, the estimate
of @ is virtually 0. These 21 amino acid residues (among 198 residues) corresponding to the cutoff value P(S1|X)

0.61 are then chosen for further analysis. Of course, this procedure is meaningful only when 6>0 significantly.

FIGURE 4.—(A) The site-specific pro-
file for predicting critical amino acid res-
idues responsible for the functonal di-
vergence between CED-3 and the ICE
subfamilies, measured by the posterior
probability of being functionally diver-
gence related at each site [ P(5|X) ]. The
B arrows point to four amino acid residues
at which functional divergence between
two subfamilies has been verified by ex-
perimentation. (B) Four predicted sites
Structural features Form a narrow pocket with an | No extra loop; a shallow that have been verified by experimenta-
ton.

alignment position

site CED-3 ICE

Sequence conservation | An invariant Trp (W} Highly variable

161 extra loop; form a H-bond depression found

Substrate specificity Netwark with a group of amino | Hydrophobic side chains

acids; Hydrophilic side chains

B6/88 | Structural features Nao surface loop Lie m an extra surface loop

Sequence conservation | Highly variable Highly conserved

131 Structural features Not a cleavage site Cleavage site for proenzyme

processing

The functional-structural basis of altered functional constraints
We mapped these 21 predicted sites onto the 3-D structure of caspases. The resolved X-ray crystal structures of
human caspase-1 and -3 (Wilson et al. 1994; Rotonda et al. 1996) were used to illustrate the structural features of ICE
and CED-3 subfamilies, respectively. From the literature, we found experimental evidence for four predicted residues
that are involved in the functional-structural divergence between CED-3 and ICE subfamilies (Figure 4B):
1. Residue 161(348) (In the literature, this site is numbered as W348, according to the protein sequence of
human caspase-1) is critical for CED-3 caspase substrate specificity by interacting with a unique surface loop in 3-D
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structure [P(S1|X) =0.999.] At this position, all 22 sequences from the CED-3 subfamily contain an invariant tryptophan
(W), whereas a variety of residues are present in the ICE subfamily (Figure 5). Crystal structural analysis reveals that
W348 is a key determinant for the caspase-3 (CED-3)-type specificity. First, W348 forms a narrow pocket with the
surface loop that is highly conserved in the CED-3 subfamily; see the boxed region in Figure 5. The steric constriction
due to this pocket determines the preference of caspase-3 to the substrates with small hydrophilic side chains. Second,
W348 along with a group of residues forms a hydrogen bond network, which affects the interaction with the substrate.
In contrast, the surface loop shared with CED-3 caspases seems to be deleted in all ICE-type caspases, as shown in the
boxed region in Figure 5. Hence, the relaxed evolutionary constraint observed at this position in the ICE subfamily is
likely to be caused by the 3-D structural difference.

2. Residues 86 [P(S1|X) =0.75] and 88[P(S1|X) =0.74] are responsible for 3-D difference with an unknown
functional role. Indeed, in human caspase-1 (ICE), these two residues appear to lie in a small loop that is not found in
the CED-3 subfamily.

3. Residue 131 [P(S1|X)=0.866] is proteolytic site specific to the ICE subfamily. All caspases are synthesized
as inactive proenzymes that need to be processed to the mature forms. However, distinct cleavage sites within the
precursors are found for two subfamilies. D131 is known as a cleavage site in human caspase-1 (ICE type). All ICE-type
caspases preserve an Asp (D) at this position, except for mouse caspase-12 (Asn, E). However, human caspase-3 (CED-
3 type) utilizes two other Asn sites for cleavage (Rotonda et al. 1996) so that the functional role of position 131 in CED-
3 caspases is no longer important. Therefore, the altered evolutionary constraints at this position can be well explained
by the different utilization of cleavage sites for the precursor processing between CED-3 and ICE subfamilies.
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Ficure 5.—Alignment of predicted regions of caspases. Four predicted sites with experimental evidence are highlighted. The
sites with asterisks are predicted residues within this region. The boxed region in the C rermi is the critical region for CED-3
substrate specificity: Most CED-3-type caspases form a surface loop, whereas a shallow depres s found in ICE-type caspases.

Pattern of type | functional divergence among CED-3-type caspases

The CED-3 subfamily consists of a specific group of caspases that mediate the programmed cell death in a well-
regulated proteolytic cascade and employ related but distinct functions. Here we infer the trend of altered functional
constraint of each cluster. Due to the data availability, we study five gene clusters: caspase-3, -7, -6, -8/-10, and -2. The
upper diagonal of Table 1 shows pairwise coefficients of type I functional divergence (¢) between them; all of them are
significantly >0 (P<0.05), with only one exception; i.e., #=0 0.006 between caspase-7 and cluster -8/-10.

To explore the pattern of type | functional divergence in each cluster, we performed functional distance analysis
(see methods). The pairwise functional distances (dg) between clusters are shown in the lower diagonal of Table 1. The
star-like tree presented in Figure 6 shows the type I functional branch length (bg) of each cluster, estimated by the least-
squares method. The null hypothesis of equal be value for each cluster was statistically rejected (P<0.05).

Long functional branch lengths (bg) of caspase-3, -6, and -2 suggest that these genes may have undergone
extensive altered functional constraints as a result of specialized functional roles in apoptosis (Figure 6). Supportive
experimental evidence is summarized as follows: (i) the non-redundant functional role of caspase-3 in neurological
apoptosis is confirmed by caspase-3 -/- knockout mice; (ii) caspase-6 and -3 have different substrate specificity, but both
participate in the protease amplification cycle by activating each other, which triggers a series of apoptotic interactions,
and (iii) caspase-2 has its unique dual-role position in positive and negative regulation in apoptosis by differential
expression of two alternative splicing isoforms. This dual-role property is also confirmed by knockout mice: Caspase-2
deficiency causes one defective apoptotic pathway (mediated by granzyme B and perforin) but accelerates another

13



pathway (cell death of motor neurons).

In contrast, virtually zero bF values of caspase-7 and -8/-10 indicate that the evolutionary rate of each site in
these genes is almost identical to that of the ancestral gene. In this regard, these caspases may inherit a large component

of ancestral function during caspase gene family evolution.

For each duplicate gene, the average intensity of functional constraints can be approximately measured by the
dn/ds ratio between the human and mouse. Interestingly, caspase-3, -6, and -2 (long br) have lower dy/ds ratios than
caspase-7 and -8/-10 (zero bg), indicating that type I functional divergence in caspases may result in a stronger functional

role in evolutionary novelties after gene duplication (Figure 6B).

0 values and d; values from pairwise comparisons in the CED-3 subfamily

TABLE 1

(0; = SE)
ds(i, j) = SE Caspase-3 Caspase-7 Caspase-6 Caspase-8/-10 Caspase-2
Caspase-3 0.437 + 0.178 0844 = 0.113 0.467 = 0.113 0.540 = 0.110
Caspase-7 0.574 = 0.257 0.579 = 0.198 0.006 = 0.022 0.198 = 0.184
Caspase-6 1.858 = 0.724 0.865 = 0.470 0.527 = 0.190 0.627 = 0.125
Caspase-8/10 0.629 = 0.212 0.006 = 0.022 0.749 = 0.401 0.306 = 0.180
Caspase-2 0.777 = 0.239 0.221 + 0.229 0.986 = 0.335 0.365 + 0.259

05, the coefficient of the functional divergence between clusters iand j; d;(4, j), the distance of the funcdonal
divergence between clusters i and jf; 4(i, j) = —In(1 — 8;), where i and jare the row and column designation
numbers, respectively, and i # j; SE, standard error.

A Substrate specificity;
Casp-6 prlolcase amplification
cycle.
Involved in both
Casp-7 positive and negative
Ancestral L— Caspl regulation.
function?
Casp-8/10
Neurogenic apoptosis;
Casp-3 protease amplification
cycle,
B
cluster bg dn/ds
Casp-3 0.694 0.085
Casp-7 -0.030 0118
Casp-6 0.901 0.071
Casp-8/10 -0.002 0.284
Casp-2 0.198 0.086

FIGURE 6.—(A) A starlike topology of the CED-3 caspases
in terms of type I functional branch length . Biological evi-
dence of functional specification for each caspase cluster is
shown in the stacked boxes. (B) Functional branch length
(&) and the rato of nonsynonymous to synonymous rates
(dy/ds) for each gene cluster, which were computed by using

human-mouse sequences.
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Unit-3

Functional Divergence after Gene Duplication: the Markov
Chain Model

Introduction

Since gene family proliferation is thought to have provided the raw materials for functional innovations, it is
desirable, from sequence analysis, to identify amino acid sites that are responsible for the functional diversity. This
approach has great potential for functional genomics because it is cost-effective, and these predictions can be further
tested by experimentation. For molecular evolutionists, it is important to know the level of functional divergence
after gene (or genome) duplication, as well as how many amino acid substitutions are actually involved in functional
innovations. Since most amino acid changes are not related to functional divergence but represent neutral evolution,
it is crucial to develop appropriate statistical methods to distinguish between these two possibilities.

When sequences of a gene family are available, the identification of functionally important residues can be
approached computationally. The approach introduced by Casari et al. (1995) used a vectorial analysis of sequence
profiles to identify functionally important residues. Lichtarge et al. (1996) developed a method called evolutionary
tracing, which is extended recently by Landgraf et al. (1999), known as weighted evolutionary tracing. In these
methods, the degree of conservation in each position is scored for different subfamilies and then visualized on the
three-dimensional protein structure.

Gu (1999) has developed a probabilistic model, based on the underlying principle that functional divergence after
gene duplication is highly correlated with the change of evolutionary rate. This correlation is complement to a
fundamental rule in molecular evolution -- functional importance is highly correlated with evolutionary conservation
(Kimura 1983). A site-specific profile based on posterior probability was then developed to predict critical residues
for functional differences between two gene clusters. Wang and Gu (2000) have successfully applied this new-
developed method to study the functional diversity of caspase gene family, and found that our predictions are
supported by experimental data.

In this paper, the modeling for functional divergence after gene duplication is studied extensively under the Markov
chain model of sequence evolution (Felsenstein 1981), which is further extended to the case of large family with
many member genes. According to the observed alignment pattern (amino acid configuration), we study two
important types of functional divergence (type | and type I, respectively). We show that Gu's (1999) method is a
fast algorithm for two gene clusters. The performance of these methods is compared by examples.

Functional divergence after gene duplication

Consider a multiple alignment of a gene family with two homologous genes 1 and 2 (figure 1). The pattern of amino
acid alignment can be tentatively classified as follows (figure 1).

Type 0 represents the amino acid pattern that is universally conserved through the whole gene family, implying that
those residues are important for the common function shared by all member genes.

Type | represents the amino acid pattern that is highly conserved in gene 1 but highly variable in gene 2, or vice
versa, implying that those residues have experienced altered functional constraints.

Type |l represents the amino acid pattern that is highly conserved in both genes but their biochemical properties are
very different, e.g., charge positive v.s. negative, implying that those residues may be responsible for functional
specification.

Type U represents the amino acid pattern at many residues that are not such clear-cut, referred as unclassified.
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(A)

Sequence Type0 Typel Typel Type-U
[ CR WQLV Ay KTLI
2 CR WQIV 2y AVLI
3 CR WOVG RV EIIV
Gene 1 4 CR WQVG RV NVLL ®
5 CR WQAT RV DMLL
6 CR WQAT RV IKIL
7 CL WQVI RV EKLI
8 CR WQIT RV DLVL
9 CR LTFD DR LELM
10 CR ITFD DR QLLY
11 CR ITFD ER ALYV
12 CR TSFD DK LEVV
Gene 2 13 CR LEFD DR KMAL
14 cL LEFE DR KLLI
15 CR LEFD DR KLLL
16 CR VGFD DK ELII
17 CR VTFD DR ALTI

Fic. 1. —A hypothetical multiple alignment to show universally

conserved sites (type 0). type I and type II amino acid configurations

and type U sites (unclassified).
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FI1G. 2.—Gene clusters for the subtree likelihood (4) and for the

whole-tree likelihood (B). The early stage after gene duplication is

designated cluster 0.

Combined States (functional divergence configurations)
for the Subtree Likelihood with Three Gene Clusters

Table 2
Type I Combined States (functional divergence configurations)
State Functional for the Whole-Tree Likelihood with Two Gene Clusters
(Si) FolFy P(5) Rate independence®  Divergence® State Functional
S (Fo. Fp. Fy) ™ M=M= No (59 £y P(5) Rate independence® Divergence’
Si.... (ALFLFy) ™ Ao hy = hs Cluster 1 So ... (Fp. Fp. Fy) m M o= R = A No
S ... (FuFLF) m A=Ay kg Cluster 2 S ... (F.F.Fp) m hioha = hs Type IT
S ... (Fo. Fo. F1) W3 hi. hy = Az Cluster 3 S ... (Fp. Fr. Fy) ™ Ay = Ay hy Type I
Sy (Fo, Fi.F)  m Al A2 A3 Clusters 2, 3 S3..-. (Fo. Ry ) L Ay = hy kg Type I
(FL. Fo. F1)  m AL A2 Az Clusters 1. 3 54 Fo. 1. ) s A1 A hs Type 1
FLF.F) m Ry g, Rs Clustess 2. 3 . Fo. Fyy o R Ao, hs Typel
. 1 (71, F1. Fy) L ki, Az As Type I
Fr. F1. ) Wy R, Ay ks Clusters 1. 2_ 3 (7. Fr. FD) py Ay Ay, As Type I

: Rate independence under each state can be illustrated by the following
example: hj, hy = k3 means that %, 15 independent of k., or ks
b Indicates which cluster(s) is under (type I) finctional divergence.

*Rate independence under each state can be illustrated by the following
example: hy, h; = h, means that )., is independent of h; or k.
® Type of functional divergence under each state.

After gene duplication, functional divergence between homologous genes 1 and 2 is likely to occur in the early stage
(figure 2). According to amino acid configurations that are likely to be generated, there are two basic types of
functional divergence after gene duplication. Type I functional divergence results in altered functional constraints
(i.e., different evolutionary rate) between duplicate genes. Type Il functional divergence results in no altered
functional constraints but radical change in amino acid property between them (e.g., charge, hydrophobicity, etc.).
Intuitively, one may expect that type | (or type 1) amino acid patterns are likely to be generated by type I (or type 1)
functional divergence. It might be true only when the effect of type I (or type Il) functional divergence has been
shown statistically significant under a stochastic model. Then, the possibility of a site being functional divergence-
related (type | or type Il) can be measured by a posterior probability, when the observed amino acid pattern is given.

Type | functional divergence: two clusters

Following the statistical framework developed by Gu (1999), we build a ““subtree" likelihood to estimate the (type I)
functional divergence by detecting the level of altered functional constraints between two clusters (figure 2A). The
advantage of subtree likelihood is its simplicity because the phylogenetic relationship among gene clusters will not
be considered.
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Unrooted likelihood for each cluster

Under the Markov chain model, the likelihood for sequence evolution can be derived as follows. First, the transition
probability matrix for a given time period t can be computed as P=e*®t, where the rate matrix R represents the
pattern of amino acid substitutions, which can be empirically determined by, for example, the Dayhoff model the
JTT model. The evolutionary rate (A1) may vary among sites because of different functional constraints. Usually 4 is
treated as a random variable, which follows a gamma distribution, i.e.,

ﬁn «a 1&’ BA
F((.k) (1)
The shape parameter o describes the strength of rate variation among sites (that is, a small value of a means a strong
rate heterogeneity among sites, and o=cc means no rate variation among sites), whereas /5 is a scale constant.
Consider the phylogenetic tree in Figure 2. Let X=(X1, X2, X3, Xa) and Y=(y1, Y2, Y3, Y4) be the observed amino acid
patterns of a site for clusters 1 and 2, respectively. For the unrooted subtree for cluster 1 or 2 (panel A), the
conditional probability of observing X or Y at a site can be written as follows, respectively

o(\) =

20 20

j(X|/\) = Z Z b.):,—, Pr_—].rl Pi\-,a*z Pr:—,:r:[; PI[;.T‘:{ Pr(,-.rq
x5=1 xg=1
20 20
f(},P\) = Z Z b.me.mRmyz PU-?!IE&P‘;‘{:U‘tH;‘(SU-I
ys=lys=1 (2)

where P;j=Pj;(v;) is the transition probability from node i to node j, vjj is the branch length between them; b; is the
frequency of amino acid i. By integrating out the random variable 4, the probability of observing X or Y at a site is
given by

p(x) = B[] = [T F(XNs()ax
p(Y) = EFYI = [ A )6()dn

respectively, where E means taking expectation.

®3)

Two-state model for functional divergence

For two gene clusters generated by gene duplication, the two-state model assumes that, in each cluster one site
has two possible states, Fo (functional divergence-unrelated) and F1 (functional divergence-related). As a result,
there are four combined states, i.e., (Fo, Fo), (Fo, F1), (F1, Fo), and (F1, F1). These states are also called functional
divergence configuration, where the first position is for clusters 1 and the second for cluster 2. When a site is under
(Fo, Fo), i.e., no altered functional constraints in both clusters, the evolutionary rate at this site is virtually the same
between two clusters, i.e., 11=1. For the last three combined states, however, the amino acid residue has experienced
altered functional constraints (i.e., under F1) at least in one cluster, resulting in statistical independence between A1
and 4, (Gu 1999).
The assumption of rate-independence for type | functional divergence means that knowing the evolutionary rate (or
the functional constraint) at such sites in one cluster contains no information for predicting the intensity of
functional constraint in the other cluster. Since 11 and 1, are independent under each of (Fo, F1), (F1, Fo) and (F1, F1),
these combined states are not distinguishable under the current model; they have to be degenerated to a single one.
Consequently, there are two nondegenerate combined states (functional divergence configurations), denoted by
So=(Fo, Fo), and S1=(Fo, F1)+(F1, Fo)+(F1, F1), respectively. It should be noted that (Fo, Fo) was written as Fo, and S;
as F1 (Gu 1999). In this sense, the F-notation describes the status in a single cluster, while S-notation is used for the
functional divergence configuration of a gene family.

The subtree likelihood

Let P(S1)=012 be the probability of a site being in state S;, and P(Sg)=1- 61, be the probability of a site being in state
So. We call 01 the coefficient of type I functional divergence between cluster 1 and cluster 2 (Gu 1999). Let X and Y
be the amino acid pattern of a site in clusters 1 and 2, respectively. Our purpose is to build a likelihood function for
estimating 61> from sequences. Gu (1999) has shown that the subtree likelihood provides a simple solution for this
purpose. Since it only depends on the (unrooted) subtrees of two clusters, the joint probability can be easily derived
based on the pattern of rate-independence. In the following, we use the superscript (*) to distinguish the subtree
likelihood from the conventional (whole-tree) likelihood, e.g., the joint probability of two subtrees is denoted by
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p*(X, V).

Since evolutionary rates (1, and A2) at an Si-site (i.e., a site under Sy), are statistically independent between two
clusters, whereas they are completely correlated (11=12, without loss of generality) at an Se-site, the joint probability
of subtrees conditional on So or Sy is given by

FYIS) = [T XN = B (XN (X 1N)]
FXYIS) = p(X)p(Y) = E[f(X|\)] % E[f(Y[A2)]

(4)
where f(X|11) or f(Y|A2) is the likelihood for each unrooted subtree, respectively, e.g., it is given by Eq.(2) for the
phylogeny in figure 2(A).
From the two-state model, one can easily show that the joint probability of two subtrees can be written as
P(X,Y) = (1= 01) £ (X, Y]S0) + b1 f* (X, Y]S)
()
Then, under the assumption of site-independence, the likelihood function over all sites (gaps excluded) is given by

L*(x|data) = [[p*(X®, Y1)
k

(6)

where K runs for sites, and X is the set of unknown parameters.

Numerical algorithm

It is complicated to compute p*(X, Y); they involve the phylogenetic tree, branch lengths (v), the shape parameter (o)

of a gamma distribution, and the coefficient of functional divergence (612). We propose the following algorithm to

solve this problem:

(1) The phylogenetic tree is inferred by the neighbor-joining method (Saitou and Nei 1987), which can handle very

large number of sequences.

(2) Given the inferred topology, the branch lengths (v) are estimated by a least-square method, and the gamma shape

parameter (a) is estimated by Gu and Zhang’s (1997) method. Then, computation of those expectations in Eq.(4) can

be approximated similar to Yang (1994).

(3) Regarding all other parameters as constants, the maximum likelihood estimate (MLE) of 61, can be obtained by
dlnL*/0Inf, =0

which satisfies

=0

N 1
>
k=

1hk+é1

X

()

where N is the sequence length and hy=1/(ax-1), ax=f*(X, Y|S1)/f*(X, Y|So) for site k.
(4) A numerical iteration such as simplex method is implemented to find the final ML estimates of v, a and 61, under
the given phylogeny.

After obtaining these ML estimates, the likelihood ratio test (LRT) can be constructed under the null hypothesis Ho:
612=0 vs. Ha: 012>0. If Ho is rejected significantly, it provides statistical evidence for functional divergence in the
coding region after gene duplication, i.e., functional constraints have shifted between two homologous genes.

Type | functional divergence: multiple clusters

For a large gene family with many member genes (clusters), the pattern of amino acid alignments is complicated.
Even for three clusters, type | amino acid pattern contains many subtypes: cluster 1 is highly variable but clusters 2
and 3 are conserved, etc. The subtree likelihood can be extended to any n number of gene clusters, but may demand
a huge computational time when n is large.

Subtree likelihood for multiple clusters

Let Zi and X; be the evolutionary rate and amino acid pattern of a site in cluster i, respectively, i=1,...,n, and
X=(Xy, ..., Xn). For two possible states (Fo/F1) in each gene cluster, we have in total 2" possible combined states
(functional divergence configurations).

For three gene clusters (n=3), all functional divergence configurations (23=8) are listed as follows: (Fo, Fo, Fo), (Fo,
Fo, F1), (Fo, F1, Fo), (F1, Fo, Fo), (Fo, F1, F1), (F1, Fo, F1), (F1, F1, Fo), (F1, F1, F1), where the first, second and third
positions refer to the Fo/F1 status of gene clusters 1, 2, and 3, respectively. For each of them, the relationship of
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evolutionary rates (41, 42 and 13) among three clusters is shown in table 1. If a site is under
(Fo, Fo, Fo), 41, 42 and A3 are completely correlated so that one can assume 11=1,=/3, without loss of generality.
Similarly, under (Fo, Fo, F1), 41=42 (=4), which is independent of 13; and so forth. However, the last four combined
states, (Fo, F1, F1), (F1, Fo, F1), (F1, F1, Fo), (F1, F1, F1), have to be degenerated to a single combined state (S4)
because A1, 42 and A3 are mutually independent (table 1). Note that there are m=2"-n nondegenerate combined states
(functional divergence configurations) in the case of n clusters, which are denoted by S;, j=0,..., m-1. In particular,
Sp indicates the functional divergence configuration that all clusters are under Fo, i.e., So=(Fo, Fo, ..., F0).
According to the pattern of rate independence (table 1), we can show that the joint probability of three subtrees
under each functional divergence configuration (S;) is given by

fH(X[So) = E[f(X|A)f(X2A)f(Xa[A)]

JHUX[S) = E[f(Xa|M)] x E[f(X2|A)f(X3)|N)]
JH(X]S2) = E[f(Xa|A)] % E[f(X1|A)[(Xa|A)]
[H(X]Ss) = E[f(Xs]As)] x E[f(X1|A) f(X2|N)]

FX[S) = E[f(Xi|A)] x E[f(Xa[A2)] % E[f(X5|As)] ®)
where f(X1|1), f(X2|A) or f(X3|4) is the likelihood for the (unrooted) subtree of each gene cluster, respectively.
Let z; be the (prior) probability of a site under Sj, i.e., 7j=P(S;). Thus, the joint probability of three subtrees at a site is
given by

m—1
p(X) =) mf(X]S))
7 9)
where m=5. Apparently, Eq.(5) is a special case of Eq.(9) when n=2 (and so m=2), and zy=1-61, and m1=612. In
general, z; (=1, 2,..., m-1) is called the coefficients of type I functional divergence for functional divergence
configuration S;. In particular, we define

m—1
Tp=1—-mo= ) m
=t (10)
as the coefficient of (type I) functional divergence of the gene family.

Numerical algorithm

Similar to Eq.(6), unknown parameters can be estimated by maximizing the likelihood L*=IT, p*(X®), which can be
approached by extending the algorithm for two-clusters; they are the same except for step 3 [i.e., Eq.(7)]. When the
number of gene clusters (n) is not very large, the Newton-Raphson algorithm is computationally efficient. Let  be
the parameter vector, z=(rx,..., 7m-1). The iteration equation is then given by z(*V= z-H1g, where g is the grade
vector, whose i-th element is

gi = 0ln L* /O

and H is the Haesson matrix, whose ij-th element is
Hy;j = &*In L*/Omon,

When appropriate initial values are given, #{2 would converge to z. Finally, their large sample variance-covariance
matrix can be approximately estimated by the inverse of Fisher's information matrix.

When n is large, an EM algorithm (Expectation and Maximization) can be implemented. The EM method is a very
general iterative approach for the dataset with missing (or incomplete) data. In our case, the ML estimates of z;
would be easy to obtain, if we know the state (Fo/F1) to which each site belongs in each gene cluster. Thus, the
original data set is treated as incomplete data, missing the category information. Using a current estimate of the
unknown parameter values, the expected value of the incomplete data is computed, weighted by the posterior
probability. This is the expectation, or E-step. The result is a set of likelihood equations that are considerably easier
to solve than the full likelihood (the maximization, or M-step). The new estimates obtained from the M step are then
used to update the expected values, and this approach is iterated until convergence.

Likelihood ratio tests (LRT) can be constructed under various null hypothesis by specifying some coefficients of
functional divergence. In particular, the LRT under the null Ho: 71=1 is apparently the most powerful test.
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Significant rejection of the null suggests functional divergence among member genes of a gene family.

Types | and Il functional divergences: two-gene clusters
In spite of the efficiency for estimating type | functional divergence, the subtree likelihood is not able to detect type
Il functional divergence that requires the evolutionary relationship between clusters. Therefore, it is desirable to
build a ‘whole-tree” likelihood for estimating these two types of functional divergence simultaneously.
In the early stage after gene duplication, many evolutionary forces (e.g., positive selection, functional relaxation, or
coevolution between contact sites) may play roles in amino acid substitutions so that a comprehensive modeling
could be complicated. A simple solution is to consider the internal branch between two clusters (i.e., the early stage)
as cluster O (figure 2B), which is ancestral. Let A; and A, be the evolutionary rates in clusters 1 and 2, respectively,
and Ao be the evolutionary rate in the internal branch (cluster 0). For each cluster, a given site has two possible states,
Fo (functional divergence-unrelated) and F; (functional divergence-related). Therefore, similar to the subtree
likelihood of three clusters, we have 2°=8 possible combined states that can be degenerated to 5 functional
divergence configurations, under which the relationship between o, 11 and A is shown in Table 2. Let z; (j=1,...,5)
be the probability of a site being under S;, i.e., 7j=P(S;). For a given site, the conditional probability for observing X
and Y is given by
20 20
‘Y Y‘/\ Z Z o flﬂm ‘A[;)f(X‘/\l;.1.‘0)f(1”|)\2; yl])
zo=1 go=1 (11)
where f(X|41; o) and f(Y|12; yo) are the likelihood functions for clusters 1 and 2, conditional of the roots xo and Yo,
respectively, and v is the internal branch length. When the phylogeny is given in figure 2B, we have

f(){l)\~qﬂ) = Z le Pr r1P| QPmrgPJ( n,Pl(u

FY N ) = ZZP P.P_.P PP

Yoys T Ysy1 T ysy2 " yoys T Yey3a -~ yey4

Ys Us
(12)
The conditional probability for observing X and Y under each combined state is given by

20 20
f{X Y|SU) - Z Z bqu[PJ'uyl:(U|/\U)f(X|/\; L(J)f(yl’\ y(JH

=1 yo=1
20 20

f{X Y|S]) = Z Z b‘iqu[P"u?a‘n(MAEJH X E[f(X|)\~ '("U)f(}/‘)\; yﬂ])]

ro=1yo=1
20 20

Z Z hi‘(rE[f(X‘Al: ‘:""U)} X E[Pl"-uyu (r‘|)\0)f(}r‘)\‘ .UU)]

zo=1yo=1

FX.Y]S3) = Z Z o B[ Progy (V] X0) f(XIA; 20)] x E[f (Y |A2 yo)]

zp=1yo=1
20 20

FXYIS) = 3003 by ElPrgy (X)) x E[f(X | M 20)] x E[f(Y[A2; )]
Tp=1 yo=1 (13)
Therefore, the joint probability of X and Y can be generally expressed as follows

F(X,Y]S5)

m—1

PX.Y) = Y mf(

j=0

(14)
where m=5 in this case. Similar to above, maximization of the likelihood L=ITx p(X®, Y®) can be achieved by either
Newton-Raphson or EM algorithm.
Next we show how Eqs.(13) and (14) are related to calculate the coefficients of type | and type Il functional
divergence. Since type Il functional divergence results no altered functional constraints between two clusters, it can
be interpreted as the functional divergence configuration Si1=(F1, Fo, Fo), i.e., cluster 0 is under F1, but clusters 1
and 2 are under Fo. Therefore, the coefficient of type Il functional divergence can be defined as 6, =P(S1)=P(F1, Fo,
Fo)= m1. On the other hand, type | functional divergence means that at least either cluster 1 or cluster 2 should be
under F1, regardless of the status of cluster 0. According to table 2, the coefficient of type | functional divergence is
given by 6, =P(S2)+P(S3)+P(S4). Moreover, if the coefficient of overall functional divergence is defined as zr =1-
P(So)=1-mo, we have
914‘6”:9‘,?:1771'0
(15)
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Thus, 7o can be called the coefficient of functional constraint of the gene family.

Predicting critical residues for functional divergence

It is of great interest to (statistically) predict which sites are likely to be responsible for these type I and type Il
functional differences. Indeed, these sites can be further tested by experimentation, using molecular, biochemical or
transgenic approaches. We will develop site-specific profiles for this purpose, which can be achieved by the
posterior analysis.

Type | functional divergence predicted from the subtree likelihood
For the simple two-cluster case, there are only two nondegenerate states: So and S1. We wish to know the probability
of S; for a given site when the amino acid configuration (X, Y) is observed, i.e., P*(SX, Y). The prior probability of
S1is P(S1)= m1=0,. According to the Bayesian law, we have
P(six.y) = 2L
where f*(X, Y|Sy) and p*(X, Y) are given by Egs.(4) and (5), respectively.
Now we consider the case of multiple clusters. Similarly, when the amino acid configuration (X) at a site is given,
the posterior probability of each functional divergence configuration S; can be generally expressed as follows

. Wif*()(‘Sf)

P (SI|X) = 7o

( | ) ngol ﬁjf!(X‘bj) (17)

Where 7i=P(S;) is the prior probability of state S;. When n=2, Eq.(17) is reduced to Eq.(16).

=0,1,....,m—1

For a large gene family with little knowledge about its functional diversity, a site-specific measure for the overall
level of type I functional divergence at each site is useful. Since the coefficient of overall functional divergence of a
gene family is defined as z=1-mo, Where mo=P(So) for So=(Fy, ..., Fo), it is natural to define such measure as
P*(F1|X)=1-P*(So|X). According to Eq.(17), it is given by
. mof"(X]50)
PR X)=1— L 0
(FilX) E!f":r)l i fH(X]S)) (18)
Type | and type Il functional divergence
Based on the whole-tree likelihood for functional divergence, we can develop a site-specific profile for type
I as well as type Il functional divergence. In the case of two-clusters, the posterior probability of each
(nondegenerate) combined state S; (table 2) can be computed as
- mif (X, Y]S)
P(Si|X)Y) = LON
EJ'.:(II :'TJf(‘Y Y |‘5J) (19)

where 7i=P(S;), and f(X, Y|S;) is given by Eq.(13). Thus, one can easily show that site-specific profiles for type | and
type Il functional divergence are given by
Pltype [|X,Y) = P(S|X,Y)+ P(8|X.Y) + P(5|X.Y)

P(S|X,Y) (20)

=0,1,....4

P(type II| X, Y)
respectively.
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Unit-4

Type-Il Functional Divergence after Gene Duplication

Introduction

According to the theory of molecular evolution (Kimura 1983), an amino acid residue is said to be functionally
important if it is evolutionarily conserved. Therefore, change of the evolutionary conservation at a particular residue
may indicate the involvement of functional divergence (Lichtarge et al, 1996; Gu 1999). Following this idea, many
research groups have developed statistical methods for testing and predicting the functional divergence of a gene
family, which indeed showed the association between sequence and functional or structural divergence (e.g.,
Lichtarge et al, 1996; Gu 1999, 2001; Gaucher et al. 2002; Landgraf et al. 2001; Wang and Gu 2001; Knudson and
Miyamoto 2001; Lopez et al. 2002; Jordon et 2002; Gribaldo et al 2003; Gu et al 2003; Madabushi et al. 2004; Gao
et al 2005; Rastogi and Liberles 2005; Zhou et al. 2006).

Gu (2001) made a distinction between two types of functional divergence. Type-I functional divergence results
in site-specific rate shift (Gu 1999; Gaucher et al. 2002; Landgraf et al. 2001; Knudson and Miyamoto 2001; Lopez
et al. 2002). A typical case is an amino acid residue that is highly conserved in a subset of homologous genes but
highly variable in a different subset of those homologous genes. Alternatively, type-11 functional divergence results
in the shift of cluster-specific amino acid property (Lichtarge et al, 1996; Gu 2001). Such divergence is exemplified
by a radical shift of amino acid property, e.g., positive versus negative charge differences at a homologous site that
is otherwise evolutionally conserved between subtrees within a phylogeny. Note that these two types of functional
divergence may have other names. For instance, the basic Evolutionary Trace approach (Lichtarge et al. 1996;
Madabush et al. 2004) has mainly focused on cluster-specific residues related to type-I1 functional divergence.
Gribaldo et al. (2003) also looked at type-I1 functional divergence as called “constant-but-different’. Meanwhile, the
weighted Evolutionary Trace approach proposed by Landgraf et al. (2001) was similar to type-1 functional
divergence (Gu 1999).

In this study, we develop a statistical method for type-1I functional divergence. To this end, we have to
address two related statistical issues. First, are the type-11 changes statistically significant? And secondly, for
observed cluster-specific amino acid residues, how can we statistically measure whether they are related to type-I|
functional divergence?

Modeling type-Il functional divergence in the early stage
The two-state model

In principle, the evolution of protein sequences of duplicate genes can be divided into two stages, the early (E)
stage after gene duplication, and the late (L) stage (Fig.1). We assume that functional divergence between duplicate
genes has occurred in the E-stage, while in the late (L) stage, the purifying selection plays a major role to maintain
related but distinct functions of two duplicate genes (Ohno 1970; Kimura 1983; Force et al. 1999). Accordingly, we
modify the two-state model (Gu 1999; 2001) specific to type-Il (cluster-specific) functional divergence:
(i) In the early (E) stage, an amino acid residue can be in either of two states: Fo (type-11 unrelated) and F1 (type-I1
related). The probability of a residue being under F1 is P(F1)=6y, and that being under Fq is P(Fo)=1-0,,
respectively. To distinguish it from the type-I functional divergence (Gu 1999), we call 6, the coefficient of type-1I
functional divergence.

(ii) In the late (L) stage, an amino acid residue is always under the state of Fo, indicating no further type-I1 functional
divergence. Amino acid substitutions in this stage are mainly under purifying selection.

Substitution models under Fo

The pattern of amino acid substitutions during evolution, or the substitution model, relies on the states of
functional divergence (Fo/F1). The Fo-substitution model largely reflects the conserved evolution of protein
sequences, which can be empirically determined by the Dayhoff model, or the JTT model. In contrast, under F4,
radical amino acid substitutions may occur more frequently, apparently due to the functional divergence between
duplicate genes (Lichtarge et al. 1996). To avoid over-parameterization, we propose a simple Fi-substitution model
that can distinguish between the radical and conserved amino acid substitutions. First, we tentatively classify twenty
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amino acids into four groups: charge positive (K, R, H), charge negative (D, E), hydrophilic (S, T, N, Q, C, G, P),
and hydrophobic (A, I, L, M, F, W, V, Y). An amino acid substitution is called radical (denoted by R) if it changes
from one group to another; otherwise it is called conserved, i.e., within the group, denoted by C. The status of no
substitution is denoted by N.

Secondly, we assume that, under state Fo, the transition probability for a radical, conserved, or no
substitution, is given by

P(R|Fy) = mp(l—e™)

P(C|Fy) = 7e(l—e )
P(N|Fy) = e

1)

respectively, where t is the evolutionary time, A is the substitution rate, and zr (or zc) is the proportion of radical (or
conserved) substitutions in the total substitutions; zr+zc=1. Apparently, Eq.(1) is an extended Poisson model of
protein sequence evolution. Based on the Dayhoff PAM matrix, we empirically determined zz=0.312 and 7c=0.688.
Indeed, without any functional divergence, conserved amino acid substitutions are more likely to occur, as expected
by the theory of neutral evolution (Kimura 1983).
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f gene cluster A and B, respectively. (B) Type-1 functional
divergences: in the carly stage, the evolutionary rate may increase f e —related change, resulting in shifted functional constraints
between clusters A and B. Type-1I functional divergence: in the early stage, the evolutionary rate may increase for functional divergence-related change,
resulting in a radical shift in amino acid property butin the late stage is back to the same level of sequence conservation. (C) The phylogenetic tree of COX

gene family, which was inferred by the Neighbor-Joining method, using amino acid sequences with Poisson distance. Bootstrapping values of more than
50% are presented. Modified from Gu (1999, 2001).

Substitution models under F;

Next we consider the transition probabilities under F; in the early stage, denoted by P(Y|F.) for Y=N, R, C. It
should be noted that, according to our model (see above), an amino acid residue that has no change in the early stage
is essentially unrelated to the type-Il functional divergence. This argument implies P(N|F1)=0. Together, one may
write

P(R|F1) = ap
P(C|F)) = ac
P(N|F)

2

That is, ar (or ac) is the (F1)-proportion of radical (or conserved) substitutions in total substitutions. Moreover, the
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F;-radical amino acid substitution (ag) can be much higher than that under Fo (zr), as will be shown later.

Evolutionary link between early and late stages

The evolutionary link between early and late stages depends on the status of type-11 functional divergence.
Let Ae and /. be the evolutionary rates in the early (E) and late (L) stages, respectively. The statistical framework
we developed is under the following assumptions:
(i) A random variable u, called the rate component, varies among sites according to a standard gamma distribution

L, _ a” a—1_—au
ou) = pry e
®)

The shape parameter o describes the strength of rate variation among sites, that is, a small value of a means a strong
rate heterogeneity among sites, and o=co means no rate variation among sites.

(i) Under Fo, the evolutionary rates in the early (Ag) and late (A.) stages share the same rate component u. That is,
Ae=C1U and A =cou, where c; and c; are constants.

(iii) F1-amino acid substitutions in the early stage is independent of the rate component u, as indicated by Eq.(2). In
other words, Fi-amino acid substitutions have escaped from the ancestral functional constraint on the protein
sequence.

Two clusters by gene duplication

Consider the typical case of two clusters generated by a gene duplication event, each of which consists of
several orthologous genes (figure 1). Let X be the amino acid pattern of the late stage, the column (site) of the
multiple alignment of the sequences. Let Y=(a, b) be the amino acid pattern of the early stage, the ancestral
sequences of two internal nodes a and b. From the assumption (ii), the joint probability of X and Y under Fy is given

by
POCYIR) = [T POXIY)P(Y|Fy)o(u)du

where P(Y|Fo) is determined by Eq.(1) for Y=N, C or R, respectively, and P(X|Y) is the likelihood of the subtrees of
two clusters A and B, conditional on the ancestral states a and b, which can be constructed according to the Markov-
chain property under a known phylogeny (Felseinstein 1981; Gu 2001). Similarly, from (iii), under F1 we have

P(X,Y|F) = P(Y|F}) % Lx P(X|Y)é(u)du

where P(Y|Fy) is given by Eq.(2). Remembering that the probability of a site being under F; is given by P(F1)=6\,
the coefficient of type-Il functional divergence, we have the joint probability for X and Y as follows

PX,Y) = (1= 6) P(X, Y[ Fo) + 0 P(X, Y[ Fy) @

Direct application of Eq.(4) for estimating 6, may face some difficulties because the amino acid pattern of early-
stage (Y) is unobservable. A straightforward solution is to invoke the ancestral sequence inference, e.g., Yang et al
(1995). Treating the ancestral sequences as inferred observations, the standard procedure for the likelihood analysis
of protein sequence can be applied. In spite of nice statistical properties, it requires a detailed description of the
model and sensitive to the statistical uncertainty in ancestral sequence inference. To solve this problem, we thus
propose a simple but robust method that is computationally efficient, allowing a genome-wide analysis.

Poisson-model in the late-stage

Testing type-11 functional divergence between two gene clusters (the early-stage) utilizes the within-cluster
amino acid patterns to examine the conservation in the late-stage. Therefore, a Poisson-based model that counts the
number (k) of substitutions may be sufficient for this purpose, where smaller values of k of substitutions in a gene
cluster indicate high conservation. Formally, at a given amino acid residue, the number of substitutions in each
cluster (A or B) follows a Poisson process, e.g., for cluster A, we have

k
pa(k) = (A'fjd) e 2aTa
with the same applying to ps(k), where Ta (or Tg) is the total evolutionary time of cluster A (or B), and 1a and Zg is
the evolutionary rate of cluster A (or B), respectively. Hence, the early-late joint distribution can be specified as
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fiy=P(X=(i,j), Y), where i or j is the number of substitutions in cluster A or B. Under this model, P(X|Y)=papg, which
is independent of the early stage Y. Similar to the derivation of Eq.(4), we have

PIX = (0).YIR) = |7 PO IR)pa(pa(i)o(udu
PIX = (00).YIR) = [~ PIYIR)pa(ips(i)o(udu
Together, one can show the early-late distribution under the Poisson-based model is given by
figy = (1= 611) /Ux P(Y|Fo)pa(i)ps(j)o(u)du + brray /Ux pa(i)ps(f)d(u)du ©)

where P(Y|Fo) is from Eq.(1), and P(Y|Fy) from Eq.(2); here an=P(N|F1)=0.

Analytical form of the early-late distribution
First we consider the late-stage distribution, fij, the probability for i and j substitutions in clusters A and B,
respectively. From Eq.(6), one can show that

fiy = fijr + fise + fiyn = A pa(t)ps(j)o(u)du = Q;;
which is a specific version of bivariate negative binomial distribution,
T(i+j+a)
@i = =5 T(a)
" ()

where ZZ(X/(DA+DB+0L), ZA:DA/(DA+DB+(X, and ZB:DB/(DA'FDBJFOC); DA:E[/IA]TA and DB:E[/IB]TB be the total
branch lengths of clusters A and B, respectively, and « is the gamma shape parameter.

VAVAVAN

Next we consider the early-stage distribution fy, the frequencies of three early-stage amino acid patterns for Y=N, R
or C. Since fy=2jfi;v, from Eq.(6) one can show

fy=01—=0)(1—e Ny +0ay, Y =R, orC @®)

and fn=1-fz-fc. Moreover, let p=fz+fc be the proportion of amino acid differences (either radical or conserved) in the
early stage, which is given by

p=01-0;)1—-e ) +6p
9

where d=E[A]t is the branch length of the early stage. Define W=0/(Da+Dg+d+a), Wa=Da/(Da+Dg+d+a), and
Ws=Dg/(Da+Dg+d+a). Finally, we have shown that the joint distribution of early-late stages, fijv, can be expressed
as follows.

fin = (1=6)M,;
fiir = (1=00)(Qij — My)mp + 0p arQyj

fﬂjp - (1 - 9”)((2:3 - 1“'[ij)7l-€ + HF‘ ﬂC-‘Cgu'

(10)
where Mj; is given by
M; = ﬁx e Mpa(i)ps (i) (u)du
- Herita) . L (z;") WeW; W
(11)

Estimation procedure

Based on the likelihood principle, we have implemented the following algorithms to estimate unknown
parameters for testing type-I1 functional divergence. Here we always assume that the phylogenetic tree of the gene
family is known or can be reliably inferred.

Late-stage likelihood: The distribution of late stage Qj; is the probability of a site being i and j substitutions in the
two clusters. As shown by Eq.(7), Qij depends on three (late-stage) parameters Da, Dg and a. We thus modified the
likelihood method of Gu and Zhang (1997) to estimate them simultaneously, Da", Dg” and o, respectively. Note that
the algorithm of Gu and Zhang (1997) corrected the parsimony bias in counting the number of substitutions.
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Likelihood for estimating early-stage parameters: Let njjy be the number of site with the pattern X=(i, j) and Y=N, Y
or C. After treating three late-stage parameters as known, we develop a simple likelihood to estimate early-stage
parameters 6y, ar/ac, and d. From Eq.(10), we have fij s=fij r*+fij c=Qij-(1-0n) Mij=Qij-fij.n. Let nijs=nijr+nijc. Thus, the
log-likelihood function

C=> nijn (1 —0) +In M)+ > nysIn(Qi; — fijn)
i,j i,j

(12)
includes two unknown parameters ) and d. Let No=2j; nj;n be the total number of sites that have no change in the
early stage. Under the p-constraint of Eq.(9), the ML estimate of 4y, is given by 6"=1/(1-y), where y is the solution
of

T?” 5 M ij

7 Qijy — M;; (13)

with d=-In(1-p)+In(1-6). (Note that M;; depends on the parameter d, while Qj;; only depends on late-stage parameters
that are treated as known). The iteration can start with the initial values of d©®=-In(1-p) until convergence. Let L be
the sequence length, fj;s"=njjs/L and fo"®=No/L. The sampling variance of 8, "a can be calculated as follows
Var(f) = ;
L(f(J + (E) (14)

where a=2j; fijs Mij?/(Qii-Mij+M;&%. When the estimates of 9y and d are obtained, ar can be estimated from Eq.(8).

The proportion of amino acid differences between the internal nodes a and b represented by p can be computed
as follows. First, we use the Bayesian algorithm (Yang et al 1995) to infer the ancestral sequences of Y. Then we
estimate p when each site in the inferred ancestral sequence receives the assignment of amino acid with the highest
posterior probability.

i“"o

The U-likelihood: This method utilizes amino acid sites that are universally conserved in both clusters, i.e., i=j=0.
Let ngov be the number of sites with Y=N (the U-type), R, or C, respectively. Let ngo=noon+Noor+Nooc, and
foo=foon+foor+fooc. Then, the log of U-likelihood can be written as

b, = Z noo,y In foo,y + (N — ng0) In(1 — foo)

Y=N,R,C
Let foon"=noon/N. Similar to above, we have shown that the ML estimates of ¢, and d are given by
: Dy+ Dg+d]"
O = 1— foon |1+ %
d = —In(1—p)+In(l-46;) (16)

The sampling variance of the estimate 6, is Var(0))=foon(1-foon)b?/N, where b=[(1+Da+Dg+d)/a]*. Since the U-
method largely relies on the universally conserved sites, it seems robust against the inaccuracy of ancestral sequence
inference and sequence alignment.

Predicting critical amino acid residues: Empirical Bayesian approach

The identification of which sites are responsible for these type Il functional differences is of great interest, if
the coefficient of functional divergence (6,) between early and late stages is significantly larger than 0. Here we
develop a method of predicting such sites, which indeed can be further tested by experimentation, using molecular,
biochemical or transgenic approaches.

We wish to know the probability of state F; in the early stage at a site, i.e., P(F1/X,Y). According to the
Bayesian law, we have

P(Fy)P(X,Y[F))
P(X,Y) (17)
where the prior probability of F; in the early stage is given by P(F1)=0,. Under the Poisson-based model,
P(X=(i, j),Y|F1) and P(X=(i, j),Y|Fo), and P(X=(i, j), Y) are given by Eqgs.(5) and (7), respectively. Noting that av=0 if
Y=N, one can show

P(F|X,Y) =
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P(R|X,Y) = 0 if  Y=N
actirQij/ fisy if Yy=0C

apfQi;/ fisy if Y=

P(R

X)Y)

P(F|X,Y)

(18)

One may find it is simple to use the posterior probability ratio of F1 to FO, i.e., R(F1|Fo)=P(F1|X,Y)/P(Fo|X,Y). After
some algebras, we obtain

R(F\|F) = 0 if Y=N
- _ 911 o l . _
R(Fllﬂ}) a 1— 91[ ;]. — (]. - h.)'iJrJJru if V=C

f , 1
R(F\|FR) = —1L o1 if Y=R

1— 0 7r 1 — (1 — h)tita (19)
where h=d/(Da+Dg+d+a).

An important result from Eq.(19) is that the posterior ratio R(F1|Fo) reaches its maximum if there is no
amino acid substitution in each gene cluster but the amino acid is different between them, i.e., i=j=0 and Y> N. As
usually observed, and assuming that the proportion of radical changes under F1 is higher than that under Fo such that
arlac>nrlmc, We have

O ag 1
1-— 9” TR 1-— (l — ,fi)fl

R(F'llFl])ma:.-: -

(20)
Hence, a typical cluster-specific site indeed will receive a highest score for the type Il functional divergence,
consistent with the intuitive biological interpretation. However, it should also be indicated that a high score could be
statistically meaningless if 9, is not significantly larger than 0. Finally, we note that R(F1|F0)max—oo if h—0. This
means that greater accuracy is achieved as more sequences are analyzed (i.e., increasing Da or Dg). In practice, one

may use this property to determine how many sequences are sufficient to achieve the statistical resolution of site
prediction.

Table 1
Summary of Functional-Divergence Analysis for COX and
G-Protein Alpha Families

COX G-Protein Alpha
Type I
N 370 151
c 102 72 8
R 11 111
P 0.365 0.548 =
D, 0.376 0.820 @
D, 0.59% 0944 2
d 0.282 0402 -
Cl 0.401 0440 °
fe 0.521 0.607 2
agp/nik 2744 2811 g
Oy + SE 0.159 = 0036 0.325 * 0.055 5
Type 1 &
6, + SE 0.490 + 0.085 0436 = 0.071 E
Nore—N. C, and R are the numbers of sites across internal nodes (a. b) of the o
tiee (see fig. 1, panel A) that display no difference, conserved difference, and radical
differences, respectively, and pis the propottion of (overall) differences between no-
des aand b. D, and Dy, are the average numbers of substitutions per sites in clusters A 1 101 201 301 401 501 601
and B, respectively, and d is the distance between nodes a and b. The parameter o is alignment positions

the gamma shape parameter. fy is the observed proportion of radical changes in all
substitutions between nodes a.and b. i, is the ratio o fradical changes under (iype-ITy Fig. 2 —Site-specific profile for type-1I functional divergence be-
functional divergence versus nonfunctional divergence. Finally, 8 and By are the co- tween COX1 and COX2, measured by the posterior ratio. Horzontal lines
efficients of type-1and type-Tl functional divergence, respectivel y. SE: standard error. (1)—(4) indicate cluster-specific pattems in table 2.
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Table 2

Functional Ranking of Several Cluster-Specific Patterns in the COX Gene Family

Between Clusters Within Clusters Number of Posterior
(carly stage) (late stage) Sites Ratio Score Probability
(1) Radical change (radical No aa. change 28 7.17 088
cluster specific)
(2) Radical change One aa. change 30 2 22 01.68-0.69
(3) Radical change Two aa. changes 20 1.25-1.41 0.56-0.59
(4) Conserved change (conserved No aa. change 31 0.5 035

cluster specific)

Note—Pattern (1): mdical cluster-specific sites. Patterns (2}-3) imperfect radical cluster-specific sites. Pattern (4):

conserved cluster-specific sites. a.a.: amino acid.

Table 3

Summary of Amino Acid Changes in 22 Radical
Cluster-Specific Positions Associated with the

Divergence of COX1 and COX2

Position COX1 COx2 Property Change
22 Y s H versus PO
51 P E PO versus —
82 W G H versus PO

103 v 5 H versus PO

121 1 K H versus +

149 T v PO versus H

197 S D PO versus —

251 E K — versus +

253 A T H versus PO

306 T E PO versus —

340 F H H vemsus +

358 R Q + versus PO

401 Y H H versus +

409 A s H versus PO

419 G A PO versus H

425 D P — versus PO

427 H A + versus H

435 v s H versus PO

463 Q E PO versus —

499 ] A PO versus H

548 K Q + wversus PO

555 T v PO versus H

Note—H: hydrophobic: FO: hydrophilic with neutral charge; +: charge

positive; and —: charge negative.
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Unit-5

Type-ll Functional Divergence after Gene Duplication: GPCR
Gene Family Analysis

Introduction
Drug-design and side effects

Precision medicine enables the development of targeted drugs and improvement of the therapeutic efficacy [1].
However, some targeted drugs are promiscuous, showing a high risk of severe side effects because they have
unexpected targets and exhibit low specificity [2]. Cross-reactivity on protein paralogs may cause undesirable side
effects of drugs [3]. Generated from gene duplications, paralogs are evolutionally homologous [4] and share similar
protein sequences or structural features, thus comprising similar binding pockets with drugs. As a result, a drug that
binds to the target protein encoded by one gene may also bind to its paralog [5].

Because most drug targets are paralogs [3], controlling target specificity to minimize side effects is required to
create novel and safer drugs. Such control may be achieved by drug design guided by paralog-discriminating features,
known as ‘‘selectivity filters” [3]. Therefore, identifying evolutionally divergent features that enable paralog
discrimination would be beneficial. It is well accepted that amino acids are evolution- ally conserved if they are
functionally important [6]. Therefore, an amino acid residue is said to be functionally or structurally important if it is
evolutionally conserved [7], whereas an evolutionally-variable residue is said to be less important. It is thus believed
that alterations in the evolutionary conservation at a particular residue imply that this residue may have been involved
in the functional divergence of a gene family during the evolution [4].

Functional divergence

Type-I functional divergence gives rise to the site-specific rate variation after gene duplication [8,9]. Typically,
an amino acid residue related to the type-I functional divergence is highly conserved in one duplicate gene, but
highly variable in the other one. Drug binding sites tend to be functionally important. If a drug targets the conserved
residue of type-l functionally-divergent site in one paralog, its binding to the non-conserved residue in another
paralogs would be avoided. Therefore, the alteration in evolutionary conservation resulting from type-I functional
divergence can distinguish one paralog from another, which may reduce the occurrence of cross-reactivity.

Type-1I functional divergence brings about the change of site-specific property. Typically, amino acid residues
are highly evolutionally conserved within each cluster of orthologous genes, i.e., both residues play vital roles
functionally or structurally for this gene family. However, a radical change of amino acid property at a homologous
site occurred between the two duplicate genes. For example, one residue is positively- charged in a gene but its
homologous residue in the duplicated gene is negatively-charged [10,11]. If a drug is designed to be negatively-
charged, it can bind to a positively-charged residue in one paralog, but not the negatively-charged one in another
paralog. A shift in key physicochemical properties relevant to ligand binding interactions may result in alterations in
binding features or affect the druggability of protein targets [12]. Therefore, type-11 functional divergence features in
physicochemical properties between paralogs can be exploited as selectivity filters to function as targetable
differences [13].

G-protein coupled receptors (GPCRs)

The known target protein receptor family of G-protein cou- pled receptors (GPCRs) contributes significantly to
side effects [14]. GPCRs constitute one of the largest families of membrane proteins with approximately 800
members encoded in the human genome [15]. According to the GRAFS classification system, GPCRs fall into five
categories, including glutamate (G), rhodopsin (a, 3, y and ) (R), adhesion (A), frizzled/- taste2 (F), and secretin (S)
families [16]. It is estimated that 30%—40% of all drugs currently on the market target GPCRs [17]. Since the gene
members of this superfamily arose from gene duplication [18], these gene targets are rich in paralogs.

Functional role difference between paralog GCGR and GLP-1R
This study aimed to reduce the side effects caused by paralogs. Glucagon receptor (GCGR) and glucagon-like
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peptide-1 receptor (GLP-1R), two clinically validated drug targets in patients with type 2 diabetes, were used as an
example. The glucagon-like subfamily belongs to secretin type GPCRs and is rich in clinically validated targets
[18]. This subfamily constitutes 4 hormone receptors duplicated from the early stage of vertebrates [19]. These
receptors play crucial roles in hormonal homeostasis in humans and other animals and serve as important drug
targets for several endocrine disorders [20]. Among them, GCGR and GLP-1R appear to have greater therapeutic
potential in diabetes than other members [21-23]. Thus, we focused on GCGR and GLP-1R for further
investigation.

GCGR shares high homology with GLP-1R, showing where 54% and 46% sequence identities in the
transmembrane and extracellular domains, respectively [24,25]. In addition, the corresponding ligands for GCGR and
GLP-1R, glucagon and GLP-1, are also highly conserved in sequence [26]. It has been hypothesized that GLP-1
bound to GCGR and exhibited glucagon-like action in fish, but later it acquired unique incretin functions [27]. In
humans, the tissue expression profile of GCGR and GLP-1Ris different. GCGR is actively expressed in liver and
kidney, whereas GLP-1R has relatively high expression in pancreas. This agrees with the fact that glucagon acts
primarily on hepatic GCGR to increase plasma glucose, while GLP-1 functions during nutrient ingestion at
pancreatic b-cell GLP-1R to enhance insulin synthesis and secretion [25]. These two hormones have significant but
opposing roles in regulating glucose homeostasis and are clinically important in the management of diabetes [28].
GLP-1 affects blood glucose, b-cell protection, appetite, and body weight, which has led to the use of multiple
GLP-1R agonists for the treatment of type 2 diabetes [29]. In contrast, glucagon is used to treat severe hypoglycemia
[30], while GCGR antagonists have been developed to treat type 2 diabetes. Thus, GCGR and GLP-1R show
divergent ligand binding profiles and are selective in hormone action, although they are highly homologous and
show conserved structures and sequences. Therefore, when GCGR antagonists wrongly target highly homologous
GLP-1R in patients with type 2 diabetes, these drugs may lose their efficacy and fail to control the release of glucose
by GCGR. Moreover, the unexpected binding of these drugs to GLP-1R might interfere with function of GLP-1R,
thus leading to the decreased insulin secretion. As a result, anti-diabetes drugs targeting one of these two paralogous
receptors at con- served sites may also target the other one by mistake, resulting in cross-reactivity and generating
unexpected side effects.
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Usage of type-Il functional divergence features as targetable difference of drugs

To avoid undesirable side effects driven by drug interactions with conserved residues of paralogs, we
analyzed type-II functional divergence between GCGR and GLP-1R to identify residues conserved in functional
constraints but different in physicochemical properties. Based on the neighbor-joining phylogenetic tree (Figure
1A), we estimated the coefficient of type-11 functional divergence (denoted by 8;)) between GCGR and GLP-1R:
61=0.236 +0.052, which is significantly higher than 0 (P <0.001). A large value of y indicates a high level of type-
Il functional divergence, and vice versa. Rejection of the null hypothesis 6,,= 0 means that after gene duplication, the
evolutionary rate has become different between the duplicate genes at some residues. Some amino acid residues that
were evolutionally conserved in both GCGR and GLP-1R across different species may have radically changed their
amino acid properties. Furthermore, we used the posterior probability Qu (k) to identify amino acid residues critical
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in type-11 functional divergence between these two paralogous genes (Figure 1B). Using an empirical cutoff of Qy
(k) >0.67, we identified 8 type-Il functional divergence-related residues between paralogous GCGR and
GLP-1R. These included E34, S150, N291, Q337, F345, F387, K405, and E427 in GCGR. The site-
specific ratio profile indicated that most residues had low posterior ratios and only a small portion of
amino acid residues were involved in this type of functional divergence. Moreover, these 8 amino acid
residues showed a typical pattern of type-1l functional divergence (Figure 1C). They showed a high
sequence conservation at paralogous sites (Figure 1D). We sized down the posterior probabilities of these
sites and found that using lower posterior probability as cut-off value (such as 0.54) would screen out
residues that were not presented in typical conservation pattern of type-Il functional divergence (data not
shown). Thus, we used these 8 type-I1 functional divergence-specific sites for further analysis about their
roles in paralog discrimination.

Type-ll functionally-divergent residues in binding sites of anti-diabetic drugs

The issues of cross-reactivity arising from paralogs have been long concerned. Identifying paralog-divergent
features as tar- getable difference might be helpful in paralog discrimination and has already been implemented in
therapeutic drug design [31]. The GCGR antagonist MK-0893 is used to treat patients with type 2 diabetes to
substantially reduce fasting and postprandial glucose concentrations [31]. MK-0893 acts at allosteric binding sites
of the seven transmembrane helical domain (7TM) in positions among TM5, TM6, and TM7 in GCGR (Figure 2A).
TMBG6 plays a role in splitting the binding sites into two different interaction regions. The TM5-TM6 cleft contains
L329, F345, L352, T353, and the alkyl chain of K349, making hydrophobic contacts with one part of MK-
0893. On the other hand, the TM6-TM7 section forms polar interactions with the other part of MK-0893 by hydro-
gen bonds with K349, S350, L399, N404, and the backbone of K405, as well as additional salt bridge with
R346. Thus, the different physicochemical properties function in the binding activity of the dual-nature antagonist
MK-0893 to GCGR (Figure 2B). We found that our predicted sites of type-Il functional divergence between GCGR
and GLP-1R, F345 and K405, were significantly enriched in the binding sites of MK- 0893 to GCGR (P < 0.05; chi-
square test).
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To figure out the key difference in paralogous residues between GCGR and GLP-1R, we analyzed the
sequence conservation in the binding sites of MK-0893 to GCGR and com- pared them with their equivalent sites
in GLP-1R. The results showed that the type-I1 specific sites F345 and K405 had a radical shift in physicochemical
properties, while other binding sites were highly conserved either in functional constraints or physicochemical
properties between the two paralogs GCGR and GLP-1R (Figure 2C). F345 and K405, showed a typical pattern
of type-11 functional divergence. They were both conserved residues in their orthologous gene families, but were
different in their physicochemical properties between paralogous GCGR and GLP-1R. F345 was hydrophobic in
GCGR but its equivalent site in GLP-1R is hydrophilic. If a molecule of drug is designed to be hydrophobic, it
tends to bind to the hydrophobic F345 in GCGR rather than the hydrophilic residue in GLP-1R. Another type-I1I
specific site K405 was positively-charged in GCGR while its equivalent site in GLP-1R was electrically neutral.
Thus a molecule of drug designed to be negatively-charged are more likely to interact with positively-charged
K405 in GCGR instead of binding to the electrically neutral residue in GLP-1R. Because the physio- chemical
properties of amino acids play an important role in the interaction of protein receptors with their ligands (small
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molecules, peptides, agonists, and antagonists), changes in their physicochemical nature and conformation may
reduce cross-reactivity due to the binding of antagonist drugs to unexpected paralogs. Therefore, determining type-
Il functional divergence-related sites between two paralogs is effective for identifying targetable differences in
therapeutic drug design.

Moreover, we investigated the binding of ligand and agonists to GLP-1R and evaluated the role of type-II
functionally-divergent sites between GCGR and GLP-1R in this study. We identified a type-Il functional divergence-
related residue D293 within human GLP-1R in the second extracellular loop (EC2) (Table S1). D293 showed a typical
pattern of type-Il functional divergence. This residue is con- served in orthologous gene families of GLP-1R and is
functionally important. It had ligand-specific effects on GLP-1 peptide-mediated selective signaling and was critical
for agonist-mediated receptor activation [32]. Residue D293 of EC2 directly interacted with key residues in the ligand
through hydrogen-bonding interactions (Table S1). A previous study [33] demonstrated that D293A mutation
reduced GLP-1 affinity and altered the binding and efficacy of agonists such as oxyntomodulin and exendin-4 [34].
As a type-Il functionally important site, D293 in GLP-1R showed different physicochemical properties from its
equivalent site N291 in paralogous GCGR. The amino acid property changes from negatively-charged in GLP-1R to
electrically neutral in GCGR, which can serve as a selective filter for telling apart GLP-1R from GCGR. Thus, the
application of divergence features of type-11 functional divergence between these two paralogs is advantageous in this
respect.

Using type-l functional divergence features as targetable difference of drugs

Besides type-I1 functional divergence, type-I functional divergence between paralogs might also be exploited
to achieve targetable differences. We thus investigated the role of residues related to type-1 functional divergence in
the binding of ligand and agonists to GLP-1R. To do so, we computed the coefficient of type-1 functional divergence
(denoted by 6,; 6,=0 for the null hypothesis) between GCGR and GLP-1R. We got 6,=0.4902 +£0.1072, which
was significantly higher than 0 (P<0.001), indicating the occurrence of type-1 functional divergence between two
paralogs. We identified a type-I-related residue E294 in the binding sites of GLP-1R. E294 is a functionally
important site for the signaling mechanism and receptor activation [32]. It is highly conserved in one cluster of
orthologous GLP-1R family but appears as diverse amino acids at paralogous sites in GCGR. Therefore, the type-I
functional divergence-related residues might play vital roles in drug binding sites for discrimination of two
paralogs for tighter specificity control of drugs.

Usage of variable residues as targetable difference of drugs

Not all binding sites of drugs have been designed to exploit the type-1 or type-11 functional divergence features
as discriminating factors between paralogs. We therefore investigated more examples to see whether residues other
than type-l or type-1l functionally-divergent residues can achieve targetable difference between paralogs. We
examined GCGR antagonist antibodies mAbl, mAb23, and mAb7 that target the ligand- binding cleft in the N-
terminal extracellular domain, where the cleft is typically structurally important in ligand binding for secretin type
GPCRs [35]. Our sequence conservation analysis of these antagonists illustrates that most binding-site residues
showed significant conservation between paralogous GCGR and GLP-1R (P=0.0003, 0.02, and 0.002 for
mAbl, mADb23, and mAb7, respectively; chi-square test. Besides the most conserved residues, there are also some
variable residues other than type-I1 or type-1 specific residues in the binding sites. Mutations at these variable residues
lead to structural differences such as a shift or changes in orientation of some side chain residues, thus resulting in
reduced receptor activation and even prevention of ligand binding [36]. Therefore, these variable residues differ from
one paralog to their equivalent sites in another paralog, while other residues in the binding sites are highly
conserved either in sequence or in physicochemical properties. This implies that there may be underlying
mechanisms involving variable residues in the discrimination of GCGR and GLP-1R.

Identification of functional divergence of druggable paralogs in GPCRs

Inspired by the usage of functional divergence features in improving drug selectivity between paralog
GCGR and GLP-1R, we hypothesized that these features might be applied to other paralogs of GPCRs in drug
design. We thus extended to all targetable GPCRs and investigated their types of functional divergence between each
paralogous gene pair. We identified 83 drug targets in total in GPCRs superfamily based on the published data on
human druggable protein tar- gets (Figure 3). We found that these targets are mainly enriched in rhodopsin,
glutamate, and secretin subfamilies, which have been revealed to bind to various types of ligands and are targeted
for drug design [17]. Among these 83 targets, 6 and 8 targets belong to the secretin and glutamate subfamilies,
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respectively, while others are found in 4 subgroups of rhodopsin subfamily. Interestingly, receptors in adhesion
and frizzled/taste2 subfamilies are not found as drug targets. The majority of receptors in these two subfamilies
remain orphans, and few attempts have been made to target these two classes.

Based on the two types of functional divergence between each paralogous pair in each subfamily, we
found that, within 465 duplicated gene pairs, 267 pairs of paralogs have undergone functional divergence during
the evolution. Among them, 67 pairs of paralogs showed only type-I functional divergence and 55 pairs showed
only type-Il functional divergence, whereas 145 pairs showed both two types of functional divergence (Table
S3). Due to the lack of public data on drug binding sites for many targetable receptors in GPCRs family, we were
not able to test the functional divergence features of all paralog pairs for verification. However, the site score for
probability to be associated with type | or type Il functional divergence is shown for each position on the
multiple alignment of these paralogous gene pairs (Table S4). We systematically evaluated the large-scale
functional divergence of each pair of paralogs in GPCRs to conclude the profiles of type-1 or type-Il related
amino acid residues in every duplicated gene. These observations could be taken into consideration when designing
conserved residues as drug binding sites (Table S5).

33



